Spaces:
Runtime error
Runtime error
basic agent
Browse files
agent.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from strictjson import strict_json_async
|
5 |
+
|
6 |
+
from sarvam import speaker, translator
|
7 |
+
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
RAG_SYS_PROMPT = None
|
11 |
+
RAG_USER_PROMPT = None
|
12 |
+
|
13 |
+
AGENT_PROMPT = """You are an AI agent.
|
14 |
+
You are given three functions - retriever (Retreives information from a database), translator and a speaker (converts text to speech).
|
15 |
+
The database is a Grade {} {} Textbook. Your task is to assess the user query and determine which function to call.
|
16 |
+
If the function is to be called, return response as None. If any function is not needed, you can answer to the query yourself. Also identify keywords in the query,
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
async def llm(system_prompt: str, user_prompt: str) -> str:
|
21 |
+
from groq import AsyncGroq
|
22 |
+
|
23 |
+
client = AsyncGroq(api_key=os.get_env("GROQ_API_KEY"))
|
24 |
+
|
25 |
+
messages = [
|
26 |
+
{"role": "system", "content": system_prompt},
|
27 |
+
{"role": "user", "content": user_prompt},
|
28 |
+
]
|
29 |
+
|
30 |
+
chat_completion = await client.chat.completions.create(
|
31 |
+
messages=messages,
|
32 |
+
model="llama3-70b-8192",
|
33 |
+
temperature=0.3,
|
34 |
+
max_tokens=360,
|
35 |
+
top_p=1,
|
36 |
+
stop=None,
|
37 |
+
stream=False,
|
38 |
+
)
|
39 |
+
|
40 |
+
return chat_completion.choices[0].message.content
|
41 |
+
|
42 |
+
|
43 |
+
async def call_agent(user_prompt, grade, subject):
|
44 |
+
system_prompt = AGENT_PROMPT.format(grade, subject)
|
45 |
+
|
46 |
+
result = await strict_json_async(
|
47 |
+
system_prompt=system_prompt,
|
48 |
+
user_prompt=user_prompt,
|
49 |
+
output_format={
|
50 |
+
"function": 'Type of function to call, type: Enum["retriever", "translator", "speaker", "none"]',
|
51 |
+
"keywords": "Array of keywords, type: List[str]",
|
52 |
+
"src_lang": "Identify the language that the user query is in, type: str",
|
53 |
+
"dest_lang": """Identify the target language from the user query if the function is either "translator" or "speaker". If language is not found, return "none",
|
54 |
+
type: Enum["hindi", "bengali", "kannada", "malayalam", "marathi", "odia", "punjabi", "tamil", "telugu", "english", "gujarati", "none"]""",
|
55 |
+
"source": "Identify the sentence that the user wants to translate or speak. Retu 'none', type: Optional[str]",
|
56 |
+
"response": "Your response, type: Optional[str]",
|
57 |
+
},
|
58 |
+
llm=llm,
|
59 |
+
)
|
60 |
+
return result
|
61 |
+
|
62 |
+
|
63 |
+
async def function_caller(user_prompt, grade, subject, client):
|
64 |
+
result = call_agent(user_prompt, grade, subject)
|
65 |
+
function = result["function"].lower()
|
66 |
+
|
67 |
+
if function == "none":
|
68 |
+
return result["response"]
|
69 |
+
|
70 |
+
elif function == "retriever":
|
71 |
+
collection = f"{grade}_{subject}"
|
72 |
+
|
73 |
+
data = client.search(collection, user_prompt)
|
74 |
+
data = [i.document for i in data]
|
75 |
+
|
76 |
+
system_prompt = RAG_SYS_PROMPT.format(grade, subject)
|
77 |
+
user_prompt = RAG_USER_PROMPT.format(user_prompt)
|
78 |
+
|
79 |
+
response = await llm(system_prompt, user_prompt)
|
80 |
+
|
81 |
+
return response
|
82 |
+
|
83 |
+
elif function == "translator":
|
84 |
+
return await translator(result["response"], result["src_lang"], result["dest_lang"])
|
85 |
+
|
86 |
+
elif function == "speaker":
|
87 |
+
return await speaker(result["response"], result["dest_lang"])
|