# Chunk_Lib.py ######################################### # Chunking Library # This library is used to perform chunking of input files. # Currently, uses naive approaches. Nothing fancy. # #### # Import necessary libraries import hashlib import json import logging import re from typing import Any, Dict, List, Optional, Tuple import xml.etree.ElementTree as ET # # Import 3rd party from openai import OpenAI from tqdm import tqdm from langdetect import detect from transformers import GPT2Tokenizer import nltk from nltk.tokenize import sent_tokenize, word_tokenize from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # # Import Local from App_Function_Libraries.Utils.Utils import load_comprehensive_config # ####################################################################################################################### # Config Settings # # # FIXME - Make sure it only downloads if it already exists, and does a check first. # Ensure NLTK data is downloaded def ensure_nltk_data(): try: nltk.data.find('tokenizers/punkt') except LookupError: nltk.download('punkt') ensure_nltk_data() # # Load GPT2 tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # # Load configuration config = load_comprehensive_config() # Embedding Chunking options chunk_options = { 'method': config.get('Chunking', 'method', fallback='words'), 'max_size': config.getint('Chunking', 'max_size', fallback=400), 'overlap': config.getint('Chunking', 'overlap', fallback=200), 'adaptive': config.getboolean('Chunking', 'adaptive', fallback=False), 'multi_level': config.getboolean('Chunking', 'multi_level', fallback=False), 'language': config.get('Chunking', 'language', fallback='english') } openai_api_key = config.get('API', 'openai_api_key') # # End of settings ####################################################################################################################### # # Functions: # Create a chunking class for refactoring FIXME # class Chunker: # def __init__(self, tokenizer: GPT2Tokenizer): # self.tokenizer = tokenizer # # def detect_language(self, text: str) -> str: # try: # return detect(text) # except: # return 'en' # # def chunk_text(self, text: str, method: str, max_size: int, overlap: int, language: str = None) -> List[str]: # if language is None: # language = self.detect_language(text) # # if method == 'words': # return self.chunk_text_by_words(text, max_size, overlap, language) # elif method == 'sentences': # return self.chunk_text_by_sentences(text, max_size, overlap, language) # elif method == 'paragraphs': # return self.chunk_text_by_paragraphs(text, max_size, overlap) # elif method == 'tokens': # return self.chunk_text_by_tokens(text, max_size, overlap, language) # elif method == 'semantic': # return self.semantic_chunking(text, max_size) # else: # return [text] def detect_language(text: str) -> str: try: return detect(text) except: # Default to English if detection fails return 'en' def load_document(file_path: str) -> str: with open(file_path, 'r', encoding='utf-8') as file: text = file.read() return re.sub(r'\s+', ' ', text).strip() def improved_chunking_process(text: str, chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]: logging.debug("Improved chunking process started...") logging.debug(f"Received chunk_options: {chunk_options}") # Extract JSON metadata if present json_content = {} try: json_end = text.index("}\n") + 1 json_content = json.loads(text[:json_end]) text = text[json_end:].strip() logging.debug(f"Extracted JSON metadata: {json_content}") except (ValueError, json.JSONDecodeError): logging.debug("No JSON metadata found at the beginning of the text") # Extract any additional header text header_match = re.match(r"(This text was transcribed using.*?)\n\n", text, re.DOTALL) header_text = "" if header_match: header_text = header_match.group(1) text = text[len(header_text):].strip() logging.debug(f"Extracted header text: {header_text}") # Make a copy of chunk_options and ensure values are correct types options = {} if chunk_options: try: options['method'] = str(chunk_options.get('method', 'words')) options['max_size'] = int(chunk_options.get('max_size', 2000)) options['overlap'] = int(chunk_options.get('overlap', 0)) # Handle language specially - it can be None lang = chunk_options.get('language') options['language'] = str(lang) if lang is not None else None logging.debug(f"Processed options: {options}") except Exception as e: logging.error(f"Error processing chunk options: {e}") raise else: options = {'method': 'words', 'max_size': 2000, 'overlap': 0, 'language': None} logging.debug("Using default options") if options.get('language') is None: detected_lang = detect_language(text) options['language'] = str(detected_lang) logging.debug(f"Detected language: {options['language']}") try: if options['method'] == 'json': chunks = chunk_text_by_json(text, max_size=options['max_size'], overlap=options['overlap']) else: chunks = chunk_text(text, options['method'], options['max_size'], options['overlap'], options['language']) logging.debug(f"Created {len(chunks)} chunks using method {options['method']}") except Exception as e: logging.error(f"Error in chunking process: {e}") raise chunks_with_metadata = [] total_chunks = len(chunks) try: for i, chunk in enumerate(chunks): metadata = { 'chunk_index': i + 1, 'total_chunks': total_chunks, 'chunk_method': options['method'], 'max_size': options['max_size'], 'overlap': options['overlap'], 'language': options['language'], 'relative_position': float((i + 1) / total_chunks) } metadata.update(json_content) metadata['header_text'] = header_text if options['method'] == 'json': chunk_text_content = json.dumps(chunk['json'], ensure_ascii=False) else: chunk_text_content = chunk chunks_with_metadata.append({ 'text': chunk_text_content, 'metadata': metadata }) logging.debug(f"Successfully created metadata for all chunks") return chunks_with_metadata except Exception as e: logging.error(f"Error creating chunk metadata: {e}") raise def multi_level_chunking(text: str, method: str, max_size: int, overlap: int, language: str) -> List[str]: logging.debug("Multi-level chunking process started...") # First level: chunk by paragraphs paragraphs = chunk_text_by_paragraphs(text, max_size * 2, overlap) # Second level: chunk each paragraph further chunks = [] for para in paragraphs: if method == 'words': chunks.extend(chunk_text_by_words(para, max_words=max_size, overlap=overlap, language=language)) elif method == 'sentences': chunks.extend(chunk_text_by_sentences(para, max_sentences=max_size, overlap=overlap, language=language)) else: chunks.append(para) return chunks # FIXME - ensure language detection occurs in each chunk function def chunk_text(text: str, method: str, max_size: int, overlap: int, language: str = None) -> List[str]: if method == 'words': logging.debug("Chunking by words...") return chunk_text_by_words(text, max_words=max_size, overlap=overlap, language=language) elif method == 'sentences': logging.debug("Chunking by sentences...") return chunk_text_by_sentences(text, max_sentences=max_size, overlap=overlap, language=language) elif method == 'paragraphs': logging.debug("Chunking by paragraphs...") return chunk_text_by_paragraphs(text, max_paragraphs=max_size, overlap=overlap) elif method == 'tokens': logging.debug("Chunking by tokens...") return chunk_text_by_tokens(text, max_tokens=max_size, overlap=overlap) elif method == 'semantic': logging.debug("Chunking by semantic similarity...") return semantic_chunking(text, max_chunk_size=max_size) else: logging.warning(f"Unknown chunking method '{method}'. Returning full text as a single chunk.") return [text] def determine_chunk_position(relative_position: float) -> str: if relative_position < 0.33: return "This chunk is from the beginning of the document" elif relative_position < 0.66: return "This chunk is from the middle of the document" else: return "This chunk is from the end of the document" def chunk_text_by_words(text: str, max_words: int = 300, overlap: int = 0, language: str = None) -> List[str]: logging.debug("chunk_text_by_words...") logging.debug(f"Parameters: max_words={max_words}, overlap={overlap}, language={language}") try: if language is None: language = detect_language(text) logging.debug(f"Detected language: {language}") if language.startswith('zh'): # Chinese import jieba words = list(jieba.cut(text)) elif language == 'ja': # Japanese import fugashi tagger = fugashi.Tagger() words = [word.surface for word in tagger(text)] else: # Default to simple splitting for other languages words = text.split() logging.debug(f"Total words: {len(words)}") chunks = [] for i in range(0, len(words), max_words - overlap): chunk = ' '.join(words[i:i + max_words]) chunks.append(chunk) logging.debug(f"Created chunk {len(chunks)} with {len(chunk.split())} words") return post_process_chunks(chunks) except Exception as e: logging.error(f"Error in chunk_text_by_words: {e}") raise def chunk_text_by_sentences(text: str, max_sentences: int = 10, overlap: int = 0, language: str = None) -> List[str]: logging.debug("chunk_text_by_sentences...") if language is None: language = detect_language(text) if language.startswith('zh'): # Chinese import jieba # Use jieba to perform sentence segmentation # jieba does not support sentence segmentation out of the box # Use punctuation as delimiters sentences = re.split(r'[。!?;]', text) sentences = [s.strip() for s in sentences if s.strip()] elif language == 'ja': # Japanese import fugashi tagger = fugashi.Tagger() # Simple sentence segmentation based on punctuation sentences = re.split(r'[。!?]', text) sentences = [s.strip() for s in sentences if s.strip()] else: # Default to NLTK for other languages try: sentences = sent_tokenize(text, language=language) except LookupError: logging.warning(f"Punkt tokenizer not found for language '{language}'. Using default 'english'.") sentences = sent_tokenize(text, language='english') chunks = [] previous_overlap = [] for i in range(0, len(sentences), max_sentences - overlap): current_sentences = sentences[i:i + max_sentences] if overlap > 0 and previous_overlap: current_sentences = previous_overlap + current_sentences chunk = ' '.join(current_sentences) chunks.append(chunk) previous_overlap = sentences[i + max_sentences - overlap:i + max_sentences] if overlap > 0 else [] return post_process_chunks(chunks) def chunk_text_by_paragraphs(text: str, max_paragraphs: int = 5, overlap: int = 0) -> List[str]: logging.debug("chunk_text_by_paragraphs...") paragraphs = re.split(r'\n\s*\n', text) chunks = [] for i in range(0, len(paragraphs), max_paragraphs - overlap): chunk = '\n\n'.join(paragraphs[i:i + max_paragraphs]) chunks.append(chunk) return post_process_chunks(chunks) def chunk_text_by_tokens(text: str, max_tokens: int = 1000, overlap: int = 0) -> List[str]: logging.debug("chunk_text_by_tokens...") # This is a simplified token-based chunking. For more accurate tokenization, # consider using a proper tokenizer like GPT-2 TokenizerFast words = text.split() chunks = [] current_chunk = [] current_token_count = 0 for word in words: word_token_count = len(word) // 4 + 1 # Rough estimate of token count if current_token_count + word_token_count > max_tokens and current_chunk: chunks.append(' '.join(current_chunk)) current_chunk = current_chunk[-overlap:] if overlap > 0 else [] current_token_count = sum(len(w) // 4 + 1 for w in current_chunk) current_chunk.append(word) current_token_count += word_token_count if current_chunk: chunks.append(' '.join(current_chunk)) return post_process_chunks(chunks) # def chunk_text_by_tokens(text: str, max_tokens: int = 1000, overlap: int = 0) -> List[str]: # logging.debug("chunk_text_by_tokens...") # # Use GPT2 tokenizer for tokenization # tokens = tokenizer.encode(text) # chunks = [] # for i in range(0, len(tokens), max_tokens - overlap): # chunk_tokens = tokens[i:i + max_tokens] # chunk = tokenizer.decode(chunk_tokens) # chunks.append(chunk) # return post_process_chunks(chunks) def post_process_chunks(chunks: List[str]) -> List[str]: return [chunk.strip() for chunk in chunks if chunk.strip()] # FIXME - F def get_chunk_metadata(chunk: str, full_text: str, chunk_type: str = "generic", chapter_number: Optional[int] = None, chapter_pattern: Optional[str] = None, language: str = None) -> Dict[str, Any]: """ Generate metadata for a chunk based on its position in the full text. """ chunk_length = len(chunk) start_index = full_text.find(chunk) end_index = start_index + chunk_length if start_index != -1 else -1 # Calculate a hash for the chunk chunk_hash = hashlib.md5(chunk.encode()).hexdigest() metadata = { 'start_index': int(start_index), 'end_index': int(end_index), 'word_count': int(len(chunk.split())), 'char_count': int(chunk_length), 'chunk_type': chunk_type, 'language': language, 'chunk_hash': chunk_hash, 'relative_position': float(start_index / len(full_text) if len(full_text) > 0 and start_index != -1 else 0) } if chunk_type == "chapter": metadata['chapter_number'] = int(chapter_number) if chapter_number is not None else None metadata['chapter_pattern'] = chapter_pattern return metadata def process_document_with_metadata(text: str, chunk_options: Dict[str, Any], document_metadata: Dict[str, Any]) -> Dict[str, Any]: chunks = improved_chunking_process(text, chunk_options) return { 'document_metadata': document_metadata, 'chunks': chunks } # Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number def chunk_text_hybrid(text: str, max_tokens: int = 1000, overlap: int = 0) -> List[str]: logging.debug("chunk_text_hybrid...") sentences = sent_tokenize(text) chunks = [] current_chunk = [] current_length = 0 for sentence in sentences: tokens = tokenizer.encode(sentence) if current_length + len(tokens) > max_tokens and current_chunk: chunks.append(' '.join(current_chunk)) # Handle overlap if overlap > 0: overlap_tokens = tokenizer.encode(' '.join(current_chunk[-overlap:])) current_chunk = current_chunk[-overlap:] current_length = len(overlap_tokens) else: current_chunk = [] current_length = 0 current_chunk.append(sentence) current_length += len(tokens) if current_chunk: chunks.append(' '.join(current_chunk)) return post_process_chunks(chunks) # Thanks openai def chunk_on_delimiter(input_string: str, max_tokens: int, delimiter: str) -> List[str]: logging.debug("chunk_on_delimiter...") chunks = input_string.split(delimiter) combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum( chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True) if dropped_chunk_count > 0: logging.warning(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.") combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks] return combined_chunks # FIXME def recursive_summarize_chunks(chunks: List[str], summarize_func, custom_prompt: Optional[str] = None, temp: Optional[float] = None, system_prompt: Optional[str] = None) -> List[str]: logging.debug("recursive_summarize_chunks...") summarized_chunks = [] current_summary = "" logging.debug(f"Summarizing {len(chunks)} chunks recursively...") logging.debug(f"Temperature is set to {temp}") for i, chunk in enumerate(chunks): if i == 0: current_summary = summarize_func(chunk, custom_prompt, temp, system_prompt) else: combined_text = current_summary + "\n\n" + chunk current_summary = summarize_func(combined_text, custom_prompt, temp, system_prompt) summarized_chunks.append(current_summary) return summarized_chunks # Sample text for testing sample_text = """ Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The result is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves. Challenges in natural language processing frequently involve speech recognition, natural language understanding, and natural language generation. Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence. """ # Example usage of different chunking methods # print("Chunking by words:") # print(chunk_text_by_words(sample_text, max_words=50)) # # print("\nChunking by sentences:") # print(chunk_text_by_sentences(sample_text, max_sentences=2)) # # print("\nChunking by paragraphs:") # print(chunk_text_by_paragraphs(sample_text, max_paragraphs=1)) # # print("\nChunking by tokens:") # print(chunk_text_by_tokens(sample_text, max_tokens=50)) # # print("\nHybrid chunking:") # print(chunk_text_hybrid(sample_text, max_tokens=50)) ####################################################################################################################### # # Experimental Semantic Chunking # # Chunk text into segments based on semantic similarity def count_units(text: str, unit: str = 'words') -> int: if unit == 'words': return len(text.split()) elif unit == 'tokens': return len(tokenizer.encode(text)) elif unit == 'characters': return len(text) else: raise ValueError("Invalid unit. Choose 'words', 'tokens', or 'characters'.") def semantic_chunking(text: str, max_chunk_size: int = 2000, unit: str = 'words') -> List[str]: logging.debug("semantic_chunking...") sentences = sent_tokenize(text) vectorizer = TfidfVectorizer() sentence_vectors = vectorizer.fit_transform(sentences) chunks = [] current_chunk = [] current_size = 0 for i, sentence in enumerate(sentences): sentence_size = count_units(sentence, unit) if current_size + sentence_size > max_chunk_size and current_chunk: chunks.append(' '.join(current_chunk)) # Use last 3 sentences for overlap current_chunk = current_chunk[-3:] current_size = count_units(' '.join(current_chunk), unit) current_chunk.append(sentence) current_size += sentence_size if i + 1 < len(sentences): current_vector = sentence_vectors[i] next_vector = sentence_vectors[i + 1] similarity = cosine_similarity(current_vector, next_vector)[0][0] if similarity < 0.5 and current_size >= max_chunk_size // 2: chunks.append(' '.join(current_chunk)) current_chunk = current_chunk[-3:] current_size = count_units(' '.join(current_chunk), unit) if current_chunk: chunks.append(' '.join(current_chunk)) return chunks def semantic_chunk_long_file(file_path: str, max_chunk_size: int = 1000, overlap: int = 100, unit: str = 'words') -> Optional[List[str]]: logging.debug("semantic_chunk_long_file...") try: with open(file_path, 'r', encoding='utf-8') as file: content = file.read() chunks = semantic_chunking(content, max_chunk_size, unit) return chunks except Exception as e: logging.error(f"Error chunking text file: {str(e)}") return None # # ####################################################################################################################### ####################################################################################################################### # # Embedding Chunking def chunk_for_embedding(text: str, file_name: str, custom_chunk_options: Dict[str, Any] = None) -> List[Dict[str, Any]]: options = chunk_options.copy() if custom_chunk_options: options.update(custom_chunk_options) logging.info(f"Chunking options: {options}") chunks = improved_chunking_process(text, options) total_chunks = len(chunks) logging.info(f"Total chunks created: {total_chunks}") chunked_text_with_headers = [] for i, chunk in enumerate(chunks, 1): chunk_text = chunk['text'] chunk_position = determine_chunk_position(chunk['metadata']['relative_position']) chunk_header = f""" Original Document: {file_name} Chunk: {i} of {total_chunks} Position: {chunk_position} --- Chunk Content --- """ full_chunk_text = chunk_header + chunk_text chunk['text'] = full_chunk_text chunk['metadata']['file_name'] = file_name chunked_text_with_headers.append(chunk) return chunked_text_with_headers # # End of Embedding Chunking ####################################################################################################################### ####################################################################################################################### # # JSON Chunking # FIXME def chunk_text_by_json(text: str, max_size: int = 1000, overlap: int = 0) -> List[Dict[str, Any]]: """ Chunk JSON-formatted text into smaller JSON chunks while preserving structure. Parameters: - text (str): The JSON-formatted text to be chunked. - max_size (int): Maximum number of items or characters per chunk. - overlap (int): Number of items or characters to overlap between chunks. Returns: - List[Dict[str, Any]]: A list of chunks with their metadata. """ logging.debug("chunk_text_by_json started...") try: json_data = json.loads(text) except json.JSONDecodeError as e: logging.error(f"Invalid JSON data: {e}") raise ValueError(f"Invalid JSON data: {e}") # Determine if JSON data is a list or a dict if isinstance(json_data, list): return chunk_json_list(json_data, max_size, overlap) elif isinstance(json_data, dict): return chunk_json_dict(json_data, max_size, overlap) else: logging.error("Unsupported JSON structure. Only JSON objects and arrays are supported.") raise ValueError("Unsupported JSON structure. Only JSON objects and arrays are supported.") def chunk_json_list(json_list: List[Any], max_size: int, overlap: int) -> List[Dict[str, Any]]: """ Chunk a JSON array into smaller chunks. Parameters: - json_list (List[Any]): The JSON array to be chunked. - max_size (int): Maximum number of items per chunk. - overlap (int): Number of items to overlap between chunks. Returns: - List[Dict[str, Any]]: A list of JSON chunks with metadata. """ logging.debug("chunk_json_list started...") chunks = [] total_items = len(json_list) step = max_size - overlap if step <= 0: raise ValueError("max_size must be greater than overlap.") for i in range(0, total_items, step): chunk = json_list[i:i + max_size] metadata = { 'chunk_index': i // step + 1, 'total_chunks': (total_items + step - 1) // step, 'chunk_method': 'json_list', 'max_size': max_size, 'overlap': overlap, 'relative_position': i / total_items } chunks.append({ 'json': chunk, 'metadata': metadata }) logging.debug(f"chunk_json_list created {len(chunks)} chunks.") return chunks def chunk_json_dict(json_dict: Dict[str, Any], max_size: int, overlap: int) -> List[Dict[str, Any]]: """ Chunk a JSON object into smaller chunks based on its 'data' key while preserving other keys like 'metadata'. Parameters: - json_dict (Dict[str, Any]): The JSON object to be chunked. - max_size (int): Maximum number of key-value pairs per chunk in the 'data' section. - overlap (int): Number of key-value pairs to overlap between chunks. Returns: - List[Dict[str, Any]]: A list of JSON chunks with metadata. """ logging.debug("chunk_json_dict started...") # Preserve non-chunked sections preserved_keys = ['metadata'] preserved_data = {key: value for key, value in json_dict.items() if key in preserved_keys} # Identify the chunkable section chunkable_key = 'data' if chunkable_key not in json_dict or not isinstance(json_dict[chunkable_key], dict): logging.error("No chunkable 'data' section found in JSON dictionary.") raise ValueError("No chunkable 'data' section found in JSON dictionary.") chunkable_data = json_dict[chunkable_key] data_keys = list(chunkable_data.keys()) total_keys = len(data_keys) chunks = [] step = max_size - overlap if step <= 0: raise ValueError("max_size must be greater than overlap.") # Adjust the loop to prevent creating an extra chunk for i in range(0, total_keys, step): chunk_keys = data_keys[i:i + max_size] # Handle overlap if i != 0 and overlap > 0: overlap_keys = data_keys[i - overlap:i] chunk_keys = overlap_keys + chunk_keys # Remove duplicate keys caused by overlap unique_chunk_keys = [] seen_keys = set() for key in chunk_keys: if key not in seen_keys: unique_chunk_keys.append(key) seen_keys.add(key) chunk_data = {key: chunkable_data[key] for key in unique_chunk_keys} metadata = { 'chunk_index': (i // step) + 1, 'total_chunks': (total_keys + step - 1) // step, 'chunk_method': 'json_dict', 'max_size': max_size, 'overlap': overlap, 'language': 'english', # Assuming English; modify as needed 'relative_position': (i // step + 1) / ((total_keys + step - 1) // step) } # Merge preserved data into metadata metadata.update(preserved_data.get('metadata', {})) # Create the chunk with preserved data chunk = { 'metadata': preserved_data, 'data': chunk_data } chunks.append({ 'json': chunk, 'metadata': metadata }) logging.debug(f"chunk_json_dict created {len(chunks)} chunks.") return chunks # # End of JSON Chunking ####################################################################################################################### ####################################################################################################################### # # OpenAI Rolling Summarization # client = OpenAI(api_key=openai_api_key) def get_chat_completion(messages, model='gpt-4-turbo'): response = client.chat.completions.create( model=model, messages=messages, temperature=0, ) return response.choices[0].message.content # This function combines text chunks into larger blocks without exceeding a specified token count. # It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow. def combine_chunks_with_no_minimum( chunks: List[str], max_tokens: int, chunk_delimiter: str = "\n\n", header: Optional[str] = None, add_ellipsis_for_overflow: bool = False, ) -> Tuple[List[str], List[List[int]], int]: dropped_chunk_count = 0 output = [] # list to hold the final combined chunks output_indices = [] # list to hold the indices of the final combined chunks candidate = [header] if header else [] # list to hold the current combined chunk candidate candidate_indices = [] for chunk_i, chunk in enumerate(chunks): chunk_with_header = [chunk] if not header else [header, chunk] combined_text = chunk_delimiter.join(candidate + chunk_with_header) token_count = len(tokenizer.encode(combined_text)) if token_count > max_tokens: if add_ellipsis_for_overflow and len(candidate) > 0: ellipsis_text = chunk_delimiter.join(candidate + ["..."]) if len(tokenizer.encode(ellipsis_text)) <= max_tokens: candidate = candidate + ["..."] dropped_chunk_count += 1 if len(candidate) > 0: output.append(chunk_delimiter.join(candidate)) output_indices.append(candidate_indices) candidate = chunk_with_header candidate_indices = [chunk_i] else: logging.warning(f"Single chunk at index {chunk_i} exceeds max_tokens and will be dropped.") dropped_chunk_count += 1 else: candidate.extend(chunk_with_header) candidate_indices.append(chunk_i) if candidate: output.append(chunk_delimiter.join(candidate)) output_indices.append(candidate_indices) return output, output_indices, dropped_chunk_count def rolling_summarize(text: str, detail: float = 0, model: str = 'gpt-4o', additional_instructions: Optional[str] = None, minimum_chunk_size: Optional[int] = 500, chunk_delimiter: str = ".", summarize_recursively: bool = False, verbose: bool = False) -> str: """ Summarizes a given text by splitting it into chunks, each of which is summarized individually. The level of detail in the summary can be adjusted, and the process can optionally be made recursive. Parameters: - text (str): The text to be summarized. - detail (float, optional): A value between 0 and 1 indicating the desired level of detail in the summary. - additional_instructions (Optional[str], optional): Additional instructions for the model. - minimum_chunk_size (Optional[int], optional): The minimum size for text chunks. - chunk_delimiter (str, optional): The delimiter used to split the text into chunks. - summarize_recursively (bool, optional): If True, summaries are generated recursively. - verbose (bool, optional): If True, prints detailed information about the chunking process. Returns: - str: The final compiled summary of the text. The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If `summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the summarization process. The function returns a compiled summary of all chunks. """ # Check detail is set correctly assert 0 <= detail <= 1, "Detail must be between 0 and 1." # Interpolate the number of chunks based on the detail parameter text_length = len(tokenizer.encode(text)) max_chunks = text_length // minimum_chunk_size if minimum_chunk_size else 10 min_chunks = 1 num_chunks = int(min_chunks + detail * (max_chunks - min_chunks)) # Adjust chunk_size based on interpolated number of chunks chunk_size = max(minimum_chunk_size, text_length // num_chunks) if num_chunks else text_length text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter) if verbose: print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.") print(f"Chunk lengths are {[len(tokenizer.encode(x)) for x in text_chunks]} tokens.") # Set system message system_message_content = "Rewrite this text in summarized form." if additional_instructions: system_message_content += f"\n\n{additional_instructions}" accumulated_summaries = [] for i, chunk in enumerate(tqdm(text_chunks, desc="Summarizing chunks")): if summarize_recursively and accumulated_summaries: # Combine previous summary with current chunk for recursive summarization combined_text = accumulated_summaries[-1] + "\n\n" + chunk user_message_content = f"Previous summary and new content to summarize:\n\n{combined_text}" else: user_message_content = chunk messages = [ {"role": "system", "content": system_message_content}, {"role": "user", "content": user_message_content} ] response = get_chat_completion(messages, model=model) accumulated_summaries.append(response) final_summary = '\n\n'.join(accumulated_summaries) return final_summary # # ####################################################################################################################### # # Ebook Chapter Chunking def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]: logging.debug("chunk_ebook_by_chapters") max_chunk_size = int(chunk_options.get('max_size', 300)) overlap = int(chunk_options.get('overlap', 0)) custom_pattern = chunk_options.get('custom_chapter_pattern', None) # List of chapter heading patterns to try, in order chapter_patterns = [ custom_pattern, r'^#{1,2}\s+', # Markdown style: '# ' or '## ' r'^Chapter\s+\d+', # 'Chapter ' followed by numbers r'^\d+\.\s+', # Numbered chapters: '1. ', '2. ', etc. r'^[A-Z\s]+$' # All caps headings ] chapter_positions = [] used_pattern = None for pattern in chapter_patterns: if pattern is None: continue chapter_regex = re.compile(pattern, re.MULTILINE | re.IGNORECASE) chapter_positions = [match.start() for match in chapter_regex.finditer(text)] if chapter_positions: used_pattern = pattern break # If no chapters found, return the entire content as one chunk if not chapter_positions: metadata = get_chunk_metadata( chunk=text, full_text=text, chunk_type="whole_document", language=chunk_options.get('language', 'english') ) return [{'text': text, 'metadata': metadata}] # Split content into chapters chunks = [] for i in range(len(chapter_positions)): start = chapter_positions[i] end = chapter_positions[i + 1] if i + 1 < len(chapter_positions) else None chapter = text[start:end] # Apply overlap if specified if overlap > 0 and i > 0: overlap_start = max(0, chapter_positions[i] - overlap) chapter = text[overlap_start:end] chunks.append(chapter) # Post-process chunks processed_chunks = post_process_chunks(chunks) # Add metadata to chunks chunks_with_metadata = [] for i, chunk in enumerate(processed_chunks): metadata = get_chunk_metadata( chunk=chunk, full_text=text, chunk_type="chapter", chapter_number=i + 1, chapter_pattern=used_pattern, language=chunk_options.get('language', 'english') ) chunks_with_metadata.append({'text': chunk, 'metadata': metadata}) return chunks_with_metadata # # End of ebook chapter chunking ####################################################################################################################### # # XML Chunking def extract_xml_structure(element, path=""): """ Recursively extract XML structure and content. Returns a list of (path, text) tuples. """ results = [] current_path = f"{path}/{element.tag}" if path else element.tag # Get direct text content if element.text and element.text.strip(): results.append((current_path, element.text.strip())) # Process attributes if any if element.attrib: for key, value in element.attrib.items(): results.append((f"{current_path}/@{key}", value)) # Process child elements for child in element: results.extend(extract_xml_structure(child, current_path)) return results def chunk_xml(xml_text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]: """ Enhanced XML chunking that preserves structure and hierarchy. Processes XML content into chunks while maintaining structural context. Args: xml_text (str): The XML content as a string chunk_options (Dict[str, Any]): Configuration options including: - max_size (int): Maximum chunk size (default: 1000) - overlap (int): Number of overlapping elements (default: 0) - method (str): Chunking method (default: 'xml') - language (str): Content language (default: 'english') Returns: List[Dict[str, Any]]: List of chunks, each containing: - text: The chunk content - metadata: Chunk metadata including XML paths and chunking info """ logging.debug("Starting XML chunking process...") try: # Parse XML content root = ET.fromstring(xml_text) chunks = [] # Get chunking parameters with defaults max_size = chunk_options.get('max_size', 1000) overlap = chunk_options.get('overlap', 0) language = chunk_options.get('language', 'english') logging.debug(f"Chunking parameters - max_size: {max_size}, overlap: {overlap}, language: {language}") # Extract full structure with hierarchy xml_content = extract_xml_structure(root) logging.debug(f"Extracted {len(xml_content)} XML elements") # Initialize chunking variables current_chunk = [] current_size = 0 chunk_count = 0 # Process XML content into chunks for path, content in xml_content: # Calculate content size (by words) content_size = len(content.split()) # Check if adding this content would exceed max_size if current_size + content_size > max_size and current_chunk: # Create chunk from current content chunk_text = '\n'.join(f"{p}: {c}" for p, c in current_chunk) chunk_count += 1 # Create chunk with metadata chunks.append({ 'text': chunk_text, 'metadata': { 'paths': [p for p, _ in current_chunk], 'chunk_method': 'xml', 'chunk_index': chunk_count, 'max_size': max_size, 'overlap': overlap, 'language': language, 'root_tag': root.tag, 'xml_attributes': dict(root.attrib) } }) # Handle overlap if specified if overlap > 0: # Keep last few items for overlap overlap_items = current_chunk[-overlap:] current_chunk = overlap_items current_size = sum(len(c.split()) for _, c in overlap_items) logging.debug(f"Created overlap chunk with {len(overlap_items)} items") else: current_chunk = [] current_size = 0 # Add current content to chunk current_chunk.append((path, content)) current_size += content_size # Process final chunk if content remains if current_chunk: chunk_text = '\n'.join(f"{p}: {c}" for p, c in current_chunk) chunk_count += 1 chunks.append({ 'text': chunk_text, 'metadata': { 'paths': [p for p, _ in current_chunk], 'chunk_method': 'xml', 'chunk_index': chunk_count, 'max_size': max_size, 'overlap': overlap, 'language': language, 'root_tag': root.tag, 'xml_attributes': dict(root.attrib) } }) # Update total chunks count in metadata for chunk in chunks: chunk['metadata']['total_chunks'] = chunk_count logging.debug(f"XML chunking complete. Created {len(chunks)} chunks") return chunks except ET.ParseError as e: logging.error(f"XML parsing error: {str(e)}") raise except Exception as e: logging.error(f"Unexpected error during XML chunking: {str(e)}") raise # # End of XML Chunking ####################################################################################################################### ####################################################################################################################### # # Functions for adapative chunking: # FIXME - punkt def adaptive_chunk_size(text: str, base_size: int = 1000, min_size: int = 500, max_size: int = 2000) -> int: # Tokenize the text into sentences sentences = sent_tokenize(text) if not sentences: return base_size # Calculate average sentence length avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences) # Adjust chunk size based on average sentence length if avg_sentence_length < 10: size_factor = 1.2 # Increase chunk size for short sentences elif avg_sentence_length > 20: size_factor = 0.8 # Decrease chunk size for long sentences else: size_factor = 1.0 # Calculate adaptive chunk size adaptive_size = int(base_size * size_factor) # Ensure chunk size is within bounds return max(min_size, min(adaptive_size, max_size)) def adaptive_chunk_size_non_punkt(text: str, base_size: int, min_size: int = 100, max_size: int = 2000) -> int: # Adaptive logic: adjust chunk size based on text complexity words = text.split() if not words: return base_size # Return base_size if text is empty avg_word_length = sum(len(word) for word in words) / len(words) if avg_word_length > 6: # Threshold for "complex" text adjusted_size = int(base_size * 0.8) # Reduce chunk size for complex text elif avg_word_length < 4: # Threshold for "simple" text adjusted_size = int(base_size * 1.2) # Increase chunk size for simple text else: adjusted_size = base_size # Ensure the chunk size is within the specified range return max(min_size, min(adjusted_size, max_size)) def adaptive_chunking(text: str, base_size: int = 1000, min_size: int = 500, max_size: int = 2000) -> List[str]: logging.debug("adaptive_chunking...") chunk_size = adaptive_chunk_size(text, base_size, min_size, max_size) words = text.split() chunks = [] current_chunk = [] current_length = 0 for word in words: if current_length + len(word) > chunk_size and current_chunk: chunks.append(' '.join(current_chunk)) current_chunk = [] current_length = 0 current_chunk.append(word) current_length += len(word) + 1 # +1 for space if current_chunk: chunks.append(' '.join(current_chunk)) return chunks # FIXME - usage example # chunk_options = { # 'method': 'words', # or any other method # 'base_size': 1000, # 'min_size': 100, # 'max_size': 2000, # 'adaptive': True, # 'language': 'en' # } #chunks = improved_chunking_process(your_text, chunk_options) # Example of chunking a document with metadata # document_metadata = { # 'title': 'Example Document', # 'author': 'John Doe', # 'creation_date': '2023-06-14', # 'source': 'https://example.com/document', # 'document_type': 'article' # } # # chunk_options = { # 'method': 'sentences', # 'base_size': 1000, # 'adaptive': True, # 'language': 'en' # } # # processed_document = process_document_with_metadata(your_text, chunk_options, document_metadata) # # End of Chunking Library #######################################################################################################################