Spaces:
Running
Running
# Local_Summarization_Lib.py | |
######################################### | |
# Local Summarization Library | |
# This library is used to perform summarization with a 'local' inference engine. | |
# | |
#### | |
# | |
#################### | |
# Function List | |
# FIXME - UPDATE Function Arguments | |
# 1. summarize_with_local_llm(text, custom_prompt_arg) | |
# 2. summarize_with_llama(api_url, text, token, custom_prompt) | |
# 3. summarize_with_kobold(api_url, text, kobold_api_token, custom_prompt) | |
# 4. summarize_with_oobabooga(api_url, text, ooba_api_token, custom_prompt) | |
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg) | |
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt) | |
# 7. save_summary_to_file(summary, file_path) | |
# | |
############################### | |
# Import necessary libraries | |
import json | |
import logging | |
import os | |
from typing import Union | |
import requests | |
# Import 3rd-party Libraries | |
from openai import OpenAI | |
# Import Local | |
from App_Function_Libraries.Utils import load_and_log_configs | |
from App_Function_Libraries.Utils import extract_text_from_segments | |
# | |
####################################################################################################################### | |
# Function Definitions | |
# | |
logger = logging.getLogger() | |
# Dirty hack for vLLM | |
openai_api_key = "Fake_key" | |
client = OpenAI(api_key=openai_api_key) | |
# FIXME - temp is not used | |
def summarize_with_local_llm(input_data, custom_prompt_arg, temp, system_message=None): | |
try: | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Local LLM: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("openai: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"Local LLM: Loaded data: {data}") | |
logging.debug(f"Local LLM: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Local LLM: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Invalid input data format") | |
if system_message is None: | |
system_message = "You are a helpful AI assistant." | |
headers = { | |
'Content-Type': 'application/json' | |
} | |
logging.debug("Local LLM: Preparing data + prompt for submittal") | |
local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" | |
data = { | |
"messages": [ | |
{ | |
"role": "system", | |
"content": system_message | |
}, | |
{ | |
"role": "user", | |
"content": local_llm_prompt | |
} | |
], | |
"max_tokens": 28000, # Adjust tokens as needed | |
} | |
logging.debug("Local LLM: Posting request") | |
response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data) | |
if response.status_code == 200: | |
response_data = response.json() | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'].strip() | |
logging.debug("Local LLM: Summarization successful") | |
print("Local LLM: Summarization successful.") | |
return summary | |
else: | |
logging.warning("Local LLM: Summary not found in the response data") | |
return "Local LLM: Summary not available" | |
else: | |
logging.debug("Local LLM: Summarization failed") | |
print("Local LLM: Failed to process summary:", response.text) | |
return "Local LLM: Failed to process summary" | |
except Exception as e: | |
logging.debug("Local LLM: Error in processing: %s", str(e)) | |
print("Error occurred while processing summary with Local LLM:", str(e)) | |
return "Local LLM: Error occurred while processing summary" | |
def summarize_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/completion", api_key=None, temp=None, system_message=None): | |
try: | |
logging.debug("Llama.cpp: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
llama_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
llama_api_key = api_key | |
logging.info("Llama.cpp: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
llama_api_key = loaded_config_data['api_keys'].get('llama') | |
if llama_api_key: | |
logging.info("Llama.cpp: Using API key from config file") | |
else: | |
logging.warning("Llama.cpp: No API key found in config file") | |
# Load transcript | |
logging.debug("llama.cpp: Loading JSON data") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Llama.cpp: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Llama.cpp: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"Llama.cpp: Loaded data: {data}") | |
logging.debug(f"Llama.cpp: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Llama.cpp: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Llama.cpp: Invalid input data format") | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
if len(api_key) > 5: | |
headers['Authorization'] = f'Bearer {api_key}' | |
llama_prompt = f"{custom_prompt} \n\n\n\n{text}" | |
if system_message is None: | |
system_message = "You are a helpful AI assistant." | |
logging.debug("llama: Prompt being sent is {llama_prompt}") | |
if system_message is None: | |
system_message = "You are a helpful AI assistant." | |
data = { | |
"messages": [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": llama_prompt} | |
], | |
"max_tokens": 4096, | |
"temperature": temp | |
} | |
logging.debug("llama: Submitting request to API endpoint") | |
print("llama: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
# if 'X' in response_data: | |
logging.debug(response_data) | |
summary = response_data['content'].strip() | |
logging.debug("llama: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}") | |
return f"Llama: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("Llama: Error in processing: %s", str(e)) | |
return f"Llama: Error occurred while processing summary with llama: {str(e)}" | |
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate | |
def summarize_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_ip="http://127.0.0.1:5001/api/v1/generate", temp=None, system_message=None): | |
logging.debug("Kobold: Summarization process starting...") | |
try: | |
logging.debug("Kobold: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
kobold_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
kobold_api_key = api_key | |
logging.info("Kobold: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
kobold_api_key = loaded_config_data['api_keys'].get('kobold') | |
if kobold_api_key: | |
logging.info("Kobold: Using API key from config file") | |
else: | |
logging.warning("Kobold: No API key found in config file") | |
logging.debug(f"Kobold: Using API Key: {kobold_api_key[:5]}...{kobold_api_key[-5:]}") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Kobold.cpp: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Kobold.cpp: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"Kobold.cpp: Loaded data: {data}") | |
logging.debug(f"Kobold.cpp: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Kobold.cpp: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Kobold.cpp: Invalid input data format") | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
kobold_prompt = f"{custom_prompt_input}\n\n\n\n{text}" | |
logging.debug("kobold: Prompt being sent is {kobold_prompt}") | |
# FIXME | |
# Values literally c/p from the api docs.... | |
data = { | |
"max_context_length": 8096, | |
"max_length": 4096, | |
"prompt": kobold_prompt, | |
"temperature": 0.7, | |
#"top_p": 0.9, | |
#"top_k": 100 | |
#"rep_penalty": 1.0, | |
} | |
logging.debug("kobold: Submitting request to API endpoint") | |
print("kobold: Submitting request to API endpoint") | |
kobold_api_ip = loaded_config_data['local_api_ip']['kobold'] | |
try: | |
response = requests.post(kobold_api_ip, headers=headers, json=data) | |
logging.debug("kobold: API Response Status Code: %d", response.status_code) | |
if response.status_code == 200: | |
try: | |
response_data = response.json() | |
logging.debug("kobold: API Response Data: %s", response_data) | |
if response_data and 'results' in response_data and len(response_data['results']) > 0: | |
summary = response_data['results'][0]['text'].strip() | |
logging.debug("kobold: Summarization successful") | |
return summary | |
else: | |
logging.error("Expected data not found in API response.") | |
return "Expected data not found in API response." | |
except ValueError as e: | |
logging.error("kobold: Error parsing JSON response: %s", str(e)) | |
return f"Error parsing JSON response: {str(e)}" | |
else: | |
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") | |
return f"kobold: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("kobold: Error in processing: %s", str(e)) | |
return f"kobold: Error occurred while processing summary with kobold: {str(e)}" | |
except Exception as e: | |
logging.error("kobold: Error in processing: %s", str(e)) | |
return f"kobold: Error occurred while processing summary with kobold: {str(e)}" | |
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API | |
def summarize_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions", temp=None, system_message=None): | |
logging.debug("Oobabooga: Summarization process starting...") | |
try: | |
logging.debug("Oobabooga: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
ooba_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
ooba_api_key = api_key | |
logging.info("Oobabooga: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
ooba_api_key = loaded_config_data['api_keys'].get('ooba') | |
if ooba_api_key: | |
logging.info("Anthropic: Using API key from config file") | |
else: | |
logging.warning("Anthropic: No API key found in config file") | |
logging.debug(f"Oobabooga: Using API Key: {ooba_api_key[:5]}...{ooba_api_key[-5:]}") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Oobabooga: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Oobabooga: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"Oobabooga: Loaded data: {data}") | |
logging.debug(f"Oobabooga: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Oobabooga: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Invalid input data format") | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
# prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It | |
# is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are | |
# my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable | |
ooba_prompt = f"{text}" + f"\n\n\n\n{custom_prompt}" | |
logging.debug("ooba: Prompt being sent is {ooba_prompt}") | |
if system_message is None: | |
system_message = "You are a helpful AI assistant." | |
data = { | |
"mode": "chat", | |
"character": "Example", | |
"messages": [{"role": "user", "content": ooba_prompt}], | |
"system_message": system_message, | |
} | |
logging.debug("ooba: Submitting request to API endpoint") | |
print("ooba: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data, verify=False) | |
logging.debug("ooba: API Response Data: %s", response) | |
if response.status_code == 200: | |
response_data = response.json() | |
summary = response.json()['choices'][0]['message']['content'] | |
logging.debug("ooba: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") | |
return f"ooba: API request failed with status code {response.status_code}: {response.text}" | |
except Exception as e: | |
logging.error("ooba: Error in processing: %s", str(e)) | |
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" | |
def summarize_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions", temp=None, system_message=None): | |
logging.debug("TabbyAPI: Summarization process starting...") | |
try: | |
logging.debug("TabbyAPI: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
tabby_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
tabby_api_key = api_key | |
logging.info("TabbyAPI: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
tabby_api_key = loaded_config_data['api_keys'].get('tabby') | |
if tabby_api_key: | |
logging.info("TabbyAPI: Using API key from config file") | |
else: | |
logging.warning("TabbyAPI: No API key found in config file") | |
tabby_api_ip = loaded_config_data['local_api_ip']['tabby'] | |
tabby_model = loaded_config_data['models']['tabby'] | |
if temp is None: | |
temp = 0.7 | |
logging.debug(f"TabbyAPI: Using API Key: {tabby_api_key[:5]}...{tabby_api_key[-5:]}") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("tabby: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("tabby: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"tabby: Loaded data: {data}") | |
logging.debug(f"tabby: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("tabby: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Invalid input data format") | |
if system_message is None: | |
system_message = "You are a helpful AI assistant." | |
headers = { | |
'Authorization': f'Bearer {api_key}', | |
'Content-Type': 'application/json' | |
} | |
data2 = { | |
'max_tokens': 4096, | |
"min_tokens": 0, | |
'temperature': temp, | |
#'top_p': 1.0, | |
#'top_k': 0, | |
#'frequency_penalty': 0, | |
#'presence_penalty': 0.0, | |
#"repetition_penalty": 1.0, | |
'model': tabby_model, | |
'user': custom_prompt_input, | |
'messages': input_data | |
} | |
response = requests.post(tabby_api_ip, headers=headers, json=data2) | |
if response.status_code == 200: | |
response_json = response.json() | |
# Validate the response structure | |
if all(key in response_json for key in ['id', 'choices', 'created', 'model', 'object', 'usage']): | |
logging.info("TabbyAPI: Received a valid 200 response") | |
summary = response_json['choices'][0].get('message', {}).get('content', '') | |
return summary | |
else: | |
logging.error("TabbyAPI: Received a 200 response, but the structure is invalid") | |
return "Error: Received an invalid response structure from TabbyAPI." | |
elif response.status_code == 422: | |
logging.error(f"TabbyAPI: Received a 422 error. Details: {response.json()}") | |
return "Error: Invalid request sent to TabbyAPI." | |
else: | |
response.raise_for_status() # This will raise an exception for other status codes | |
except requests.exceptions.RequestException as e: | |
logging.error(f"Error summarizing with TabbyAPI: {e}") | |
return f"Error summarizing with TabbyAPI: {str(e)}" | |
except json.JSONDecodeError: | |
logging.error("TabbyAPI: Received an invalid JSON response") | |
return "Error: Received an invalid JSON response from TabbyAPI." | |
except Exception as e: | |
logging.error(f"Unexpected error in summarize_with_tabbyapi: {e}") | |
return f"Unexpected error in summarization process: {str(e)}" | |
def summarize_with_vllm( | |
input_data: Union[str, dict, list], | |
custom_prompt_input: str, | |
api_key: str = None, | |
vllm_api_url: str = "http://127.0.0.1:8000/v1/chat/completions", | |
model: str = None, | |
system_prompt: str = None, | |
temp: float = 0.7 | |
) -> str: | |
logging.debug("vLLM: Summarization process starting...") | |
try: | |
logging.debug("vLLM: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
vllm_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
vllm_api_key = api_key | |
logging.info("vLLM: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
vllm_api_key = loaded_config_data['api_keys'].get('vllm') | |
if vllm_api_key: | |
logging.info("vLLM: Using API key from config file") | |
else: | |
logging.warning("vLLM: No API key found in config file") | |
logging.debug(f"vLLM: Using API Key: {vllm_api_key[:5]}...{vllm_api_key[-5:]}") | |
# Process input data | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("vLLM: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("vLLM: Using provided data for summarization") | |
data = input_data | |
logging.debug(f"vLLM: Type of data: {type(data)}") | |
# Extract text for summarization | |
if isinstance(data, dict) and 'summary' in data: | |
logging.debug("vLLM: Summary already exists in the loaded data") | |
return data['summary'] | |
elif isinstance(data, list): | |
text = extract_text_from_segments(data) | |
elif isinstance(data, str): | |
text = data | |
elif isinstance(data, dict): | |
text = json.dumps(data) | |
else: | |
raise ValueError("Invalid input data format") | |
logging.debug(f"vLLM: Extracted text (showing first 500 chars): {text[:500]}...") | |
if system_prompt is None: | |
system_prompt = "You are a helpful AI assistant." | |
model = model or loaded_config_data['models']['vllm'] | |
if system_prompt is None: | |
system_prompt = "You are a helpful AI assistant." | |
# Prepare the API request | |
headers = { | |
"Content-Type": "application/json" | |
} | |
payload = { | |
"model": model, | |
"messages": [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": f"{custom_prompt_input}\n\n{text}"} | |
] | |
} | |
# Make the API call | |
logging.debug(f"vLLM: Sending request to {vllm_api_url}") | |
response = requests.post(vllm_api_url, headers=headers, json=payload) | |
# Check for successful response | |
response.raise_for_status() | |
# Extract and return the summary | |
response_data = response.json() | |
if 'choices' in response_data and len(response_data['choices']) > 0: | |
summary = response_data['choices'][0]['message']['content'] | |
logging.debug("vLLM: Summarization successful") | |
logging.debug(f"vLLM: Summary (first 500 chars): {summary[:500]}...") | |
return summary | |
else: | |
raise ValueError("Unexpected response format from vLLM API") | |
except requests.RequestException as e: | |
logging.error(f"vLLM: API request failed: {str(e)}") | |
return f"Error: vLLM API request failed - {str(e)}" | |
except json.JSONDecodeError as e: | |
logging.error(f"vLLM: Failed to parse API response: {str(e)}") | |
return f"Error: Failed to parse vLLM API response - {str(e)}" | |
except Exception as e: | |
logging.error(f"vLLM: Unexpected error during summarization: {str(e)}") | |
return f"Error: Unexpected error during vLLM summarization - {str(e)}" | |
def summarize_with_ollama(input_data, custom_prompt, api_url="http://127.0.0.1:11434/api/generate", api_key=None, temp=None, system_message=None, model=None): | |
try: | |
logging.debug("ollama: Loading and validating configurations") | |
loaded_config_data = load_and_log_configs() | |
if loaded_config_data is None: | |
logging.error("Failed to load configuration data") | |
ollama_api_key = None | |
else: | |
# Prioritize the API key passed as a parameter | |
if api_key and api_key.strip(): | |
ollama_api_key = api_key | |
logging.info("Ollama: Using API key provided as parameter") | |
else: | |
# If no parameter is provided, use the key from the config | |
ollama_api_key = loaded_config_data['api_keys'].get('ollama') | |
if ollama_api_key: | |
logging.info("Ollama: Using API key from config file") | |
else: | |
logging.warning("Ollama: No API key found in config file") | |
model = loaded_config_data['models']['ollama'] | |
# Load transcript | |
logging.debug("Ollama: Loading JSON data") | |
if isinstance(input_data, str) and os.path.isfile(input_data): | |
logging.debug("Ollama: Loading json data for summarization") | |
with open(input_data, 'r') as file: | |
data = json.load(file) | |
else: | |
logging.debug("Ollama: Using provided string data for summarization") | |
data = input_data | |
logging.debug(f"Ollama: Loaded data: {data}") | |
logging.debug(f"Ollama: Type of data: {type(data)}") | |
if isinstance(data, dict) and 'summary' in data: | |
# If the loaded data is a dictionary and already contains a summary, return it | |
logging.debug("Ollama: Summary already exists in the loaded data") | |
return data['summary'] | |
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization | |
if isinstance(data, list): | |
segments = data | |
text = extract_text_from_segments(segments) | |
elif isinstance(data, str): | |
text = data | |
else: | |
raise ValueError("Ollama: Invalid input data format") | |
headers = { | |
'accept': 'application/json', | |
'content-type': 'application/json', | |
} | |
if len(ollama_api_key) > 5: | |
headers['Authorization'] = f'Bearer {ollama_api_key}' | |
ollama_prompt = f"{custom_prompt} \n\n\n\n{text}" | |
if system_message is None: | |
system_message = "You are a helpful AI assistant." | |
logging.debug(f"llama: Prompt being sent is {ollama_prompt}") | |
if system_message is None: | |
system_message = "You are a helpful AI assistant." | |
data = { | |
"model": model, | |
"messages": [ | |
{"role": "system", | |
"content": system_message | |
}, | |
{"role": "user", | |
"content": ollama_prompt | |
} | |
], | |
} | |
logging.debug("Ollama: Submitting request to API endpoint") | |
print("Ollama: Submitting request to API endpoint") | |
response = requests.post(api_url, headers=headers, json=data) | |
response_data = response.json() | |
logging.debug("API Response Data: %s", response_data) | |
if response.status_code == 200: | |
# if 'X' in response_data: | |
logging.debug(response_data) | |
summary = response_data['content'].strip() | |
logging.debug("Ollama: Summarization successful") | |
print("Summarization successful.") | |
return summary | |
else: | |
logging.error(f"Ollama: API request failed with status code {response.status_code}: {response.text}") | |
return f"Ollama: API request failed: {response.text}" | |
except Exception as e: | |
logging.error("Ollama: Error in processing: %s", str(e)) | |
return f"Ollama: Error occurred while processing summary with ollama: {str(e)}" | |
def save_summary_to_file(summary, file_path): | |
logging.debug("Now saving summary to file...") | |
base_name = os.path.splitext(os.path.basename(file_path))[0] | |
summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt') | |
os.makedirs(os.path.dirname(summary_file_path), exist_ok=True) | |
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") | |
with open(summary_file_path, 'w') as file: | |
file.write(summary) | |
logging.info(f"Summary saved to file: {summary_file_path}") | |
# | |
# | |
####################################################################################################################### | |