File size: 43,665 Bytes
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
# Local_Summarization_Lib.py
#########################################
# Local Summarization Library
# This library is used to perform summarization with a 'local' inference engine.
#
####
#
####################
# Function List
# FIXME - UPDATE Function Arguments
# 1. summarize_with_local_llm(text, custom_prompt_arg)
# 2. summarize_with_llama(api_url, text, token, custom_prompt)
# 3. summarize_with_kobold(api_url, text, kobold_api_token, custom_prompt)
# 4. summarize_with_oobabooga(api_url, text, ooba_api_token, custom_prompt)
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
# 7. save_summary_to_file(summary, file_path)
#
###############################
# Import necessary libraries
import json
import logging
import os
import time
from typing import Union

import requests
# Import 3rd-party Libraries
# Import Local
from App_Function_Libraries.Utils.Utils import load_and_log_configs, extract_text_from_segments
#
#######################################################################################################################
# Function Definitions
#

logger = logging.getLogger()


summarizer_prompt = """

                    <s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]

                        **Bulleted Note Creation Guidelines**



                        **Headings**:

                        - Based on referenced topics, not categories like quotes or terms

                        - Surrounded by **bold** formatting

                        - Not listed as bullet points

                        - No space between headings and list items underneath



                        **Emphasis**:

                        - **Important terms** set in bold font

                        - **Text ending in a colon**: also bolded



                        **Review**:

                        - Ensure adherence to specified format

                        - Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]

                    """

# FIXME - temp is not used
def summarize_with_local_llm(input_data, custom_prompt_arg, temp, system_message=None):
    try:
        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("Local LLM: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("openai: Using provided string data for summarization")
            data = input_data

        logging.debug(f"Local LLM: Loaded data: {data}")
        logging.debug(f"Local LLM: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("Local LLM: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Invalid input data format")

        if system_message is None:
            system_message = "You are a helpful AI assistant."

        headers = {
            'Content-Type': 'application/json'
        }

        logging.debug("Local LLM: Preparing data + prompt for submittal")
        local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        data = {
            "messages": [
                {
                    "role": "system",
                    "content": system_message
                },
                {
                    "role": "user",
                    "content": local_llm_prompt
                }
            ],
            "max_tokens": 28000,  # Adjust tokens as needed
        }
        logging.debug("Local LLM: Posting request")
        response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data)

        if response.status_code == 200:
            response_data = response.json()
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("Local LLM: Summarization successful")
                print("Local LLM: Summarization successful.")
                return summary
            else:
                logging.warning("Local LLM: Summary not found in the response data")
                return "Local LLM: Summary not available"
        else:
            logging.debug("Local LLM: Summarization failed")
            print("Local LLM: Failed to process summary:", response.text)
            return "Local LLM: Failed to process summary"
    except Exception as e:
        logging.debug("Local LLM: Error in processing: %s", str(e))
        print("Error occurred while processing summary with Local LLM:", str(e))
        return "Local LLM: Error occurred while processing summary"


def summarize_with_llama(input_data, custom_prompt, api_key=None, temp=None, system_message=None, api_url="http://127.0.0.1:8080/completion",):
    try:
        logging.debug("Llama.cpp: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            llama_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                llama_api_key = api_key
                logging.info("Llama.cpp: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                llama_api_key = loaded_config_data['api_keys'].get('llama')
                if llama_api_key:
                    logging.info("Llama.cpp: Using API key from config file")
                else:
                    logging.warning("Llama.cpp: No API key found in config file")

        # Load transcript
        logging.debug("llama.cpp: Loading JSON data")
        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("Llama.cpp: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("Llama.cpp: Using provided string data for summarization")
            data = input_data

        logging.debug(f"Llama Summarize: Loaded data: {data}")
        logging.debug(f"Llama Summarize: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("Llama Summarize: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Llama Summarize: Invalid input data format")

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }
        if len(api_key) > 5:
            headers['Authorization'] = f'Bearer {api_key}'

        if system_message is None:
            system_message = "You are a helpful AI assistant."
        logging.debug(f":Llama Summarize: System Prompt being sent is {system_message}")
        if system_message is None:
            system_message = "You are a helpful AI assistant."

        if custom_prompt is None:
            llama_prompt = f"{summarizer_prompt}\n\n\n\n{text}"
        else:
            llama_prompt = f"{custom_prompt}\n\n\n\n{text}"

        data = {
            "messages": [
                {"role": "system", "content": system_message},
                {"role": "user", "content": llama_prompt}
            ],
            "max_tokens": 4096,
            "temperature": temp
        }

        logging.debug("llama: Submitting request to API endpoint")
        print("llama: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data)
        response_data = response.json()
        logging.debug("API Response Data: %s", response_data)

        if response.status_code == 200:
            # if 'X' in response_data:
            logging.debug(response_data)
            summary = response_data['content'].strip()
            logging.debug("llama: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}")
            return f"Llama: API request failed: {response.text}"

    except Exception as e:
        logging.error("Llama: Error in processing: %s", str(e))
        return f"Llama: Error occurred while processing summary with llama: {str(e)}"


# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
def summarize_with_kobold(input_data, api_key, custom_prompt_input,  system_message=None, temp=None, kobold_api_ip="http://127.0.0.1:5001/api/v1/generate"):
    logging.debug("Kobold: Summarization process starting...")
    try:
        logging.debug("Kobold: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            kobold_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                kobold_api_key = api_key
                logging.info("Kobold: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                kobold_api_key = loaded_config_data['api_keys'].get('kobold')
                if kobold_api_key:
                    logging.info("Kobold: Using API key from config file")
                else:
                    logging.warning("Kobold: No API key found in config file")

        logging.debug(f"Kobold: Using API Key: {kobold_api_key[:5]}...{kobold_api_key[-5:]}")

        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("Kobold.cpp: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("Kobold.cpp: Using provided string data for summarization")
            data = input_data

        logging.debug(f"Kobold.cpp: Loaded data: {data}")
        logging.debug(f"Kobold.cpp: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("Kobold.cpp: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Kobold.cpp: Invalid input data format")

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }
        if custom_prompt_input is None:
            kobold_prompt = f"{summarizer_prompt}\n\n\n\n{text}"
        else:
            kobold_prompt = f"{custom_prompt_input}\n\n\n\n{text}"

        logging.debug("Kobold summarization: Prompt being sent is {kobold_prompt}")

        # FIXME
        # Values literally c/p from the api docs....
        data = {
            "max_context_length": 8096,
            "max_length": 4096,
            "prompt": kobold_prompt,
            "temperature": 0.7,
            #"top_p": 0.9,
            #"top_k": 100
            #"rep_penalty": 1.0,
        }

        logging.debug("Kobold Summarization: Submitting request to API endpoint")
        print("Kobold Summarization: Submitting request to API endpoint")
        kobold_api_ip = loaded_config_data['local_api_ip']['kobold']
        try:
            response = requests.post(kobold_api_ip, headers=headers, json=data)
            logging.debug("Kobold Summarization: API Response Status Code: %d", response.status_code)

            if response.status_code == 200:
                try:
                    response_data = response.json()
                    logging.debug("kobold: API Response Data: %s", response_data)

                    if response_data and 'results' in response_data and len(response_data['results']) > 0:
                        summary = response_data['results'][0]['text'].strip()
                        logging.debug("kobold: Summarization successful")
                        return summary
                    else:
                        logging.error("Expected data not found in API response.")
                        return "Expected data not found in API response."
                except ValueError as e:
                    logging.error("kobold: Error parsing JSON response: %s", str(e))
                    return f"Error parsing JSON response: {str(e)}"
            else:
                logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
                return f"kobold: API request failed: {response.text}"
        except Exception as e:
            logging.error("kobold: Error in processing: %s", str(e))
            return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
    except Exception as e:
        logging.error("kobold: Error in processing: %s", str(e))
        return f"kobold: Error occurred while processing summary with kobold: {str(e)}"


# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
def summarize_with_oobabooga(input_data, api_key, custom_prompt, system_message=None, temp=None, api_url="http://127.0.0.1:5000/v1/chat/completions"):
    logging.debug("Oobabooga: Summarization process starting...")
    try:
        logging.debug("Oobabooga: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            ooba_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                ooba_api_key = api_key
                logging.info("Oobabooga: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                ooba_api_key = loaded_config_data['api_keys'].get('ooba')
                if ooba_api_key:
                    logging.info("Anthropic: Using API key from config file")
                else:
                    logging.warning("Anthropic: No API key found in config file")

        logging.debug(f"Oobabooga: Using API Key: {ooba_api_key[:5]}...{ooba_api_key[-5:]}")

        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("Oobabooga: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("Oobabooga: Using provided string data for summarization")
            data = input_data

        logging.debug(f"Oobabooga: Loaded data: {data}")
        logging.debug(f"Oobabooga: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("Oobabooga: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Invalid input data format")

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }

        if custom_prompt is None:
            custom_prompt = f"{summarizer_prompt}\n\n\n\n{text}"
        else:
            custom_prompt = f"{custom_prompt}\n\n\n\n{text}"

        logging.debug("Ooba Summarize: Prompt being sent is {kobold_prompt}")

        ooba_prompt = f"{text}" + f"\n\n\n\n{custom_prompt}"
        logging.debug("ooba: Prompt being sent is {ooba_prompt}")

        if system_message is None:
            system_message = "You are a helpful AI assistant."

        data = {
            "mode": "chat",
            "character": "Example",
            "messages": [{"role": "user", "content": ooba_prompt}],
            "system_message": system_message,
        }

        logging.debug("ooba: Submitting request to API endpoint")
        print("ooba: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data, verify=False)
        logging.debug("ooba: API Response Data: %s", response)

        if response.status_code == 200:
            response_data = response.json()
            summary = response.json()['choices'][0]['message']['content']
            logging.debug("ooba: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
            return f"ooba: API request failed with status code {response.status_code}: {response.text}"

    except Exception as e:
        logging.error("ooba: Error in processing: %s", str(e))
        return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"


def summarize_with_tabbyapi(input_data, custom_prompt_input, system_message=None, api_key=None, temp=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"):
    logging.debug("TabbyAPI: Summarization process starting...")
    try:
        logging.debug("TabbyAPI: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            tabby_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                tabby_api_key = api_key
                logging.info("TabbyAPI: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                tabby_api_key = loaded_config_data['api_keys'].get('tabby')
                if tabby_api_key:
                    logging.info("TabbyAPI: Using API key from config file")
                else:
                    logging.warning("TabbyAPI: No API key found in config file")

        tabby_api_ip = loaded_config_data['local_api_ip']['tabby']
        tabby_model = loaded_config_data['models']['tabby']
        if temp is None:
            temp = 0.7

        logging.debug(f"TabbyAPI: Using API Key: {tabby_api_key[:5]}...{tabby_api_key[-5:]}")

        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("tabby: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("tabby: Using provided string data for summarization")
            data = input_data

        logging.debug(f"tabby: Loaded data: {data}")
        logging.debug(f"tabby: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("tabby: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Invalid input data format")
        if system_message is None:
            system_message = "You are a helpful AI assistant."

        if custom_prompt_input is None:
            custom_prompt_input = f"{summarizer_prompt}\n\n\n\n{text}"
        else:
            custom_prompt_input = f"{custom_prompt_input}\n\n\n\n{text}"

        headers = {
            'Authorization': f'Bearer {api_key}',
            'Content-Type': 'application/json'
        }
        data2 = {
            'max_tokens': 4096,
            "min_tokens": 0,
            'temperature': temp,
            #'top_p': 1.0,
            #'top_k': 0,
            #'frequency_penalty': 0,
            #'presence_penalty': 0.0,
            #"repetition_penalty": 1.0,
            'model': tabby_model,
            'user': custom_prompt_input,
            'messages': input_data
        }

        response = requests.post(tabby_api_ip, headers=headers, json=data2)

        if response.status_code == 200:
            response_json = response.json()

            # Validate the response structure
            if all(key in response_json for key in ['id', 'choices', 'created', 'model', 'object', 'usage']):
                logging.info("TabbyAPI: Received a valid 200 response")
                summary = response_json['choices'][0].get('message', {}).get('content', '')
                return summary
            else:
                logging.error("TabbyAPI: Received a 200 response, but the structure is invalid")
                return "Error: Received an invalid response structure from TabbyAPI."

        elif response.status_code == 422:
            logging.error(f"TabbyAPI: Received a 422 error. Details: {response.json()}")
            return "Error: Invalid request sent to TabbyAPI."

        else:
            response.raise_for_status()  # This will raise an exception for other status codes

    except requests.exceptions.RequestException as e:
        logging.error(f"Error summarizing with TabbyAPI: {e}")
        return f"Error summarizing with TabbyAPI: {str(e)}"
    except json.JSONDecodeError:
        logging.error("TabbyAPI: Received an invalid JSON response")
        return "Error: Received an invalid JSON response from TabbyAPI."
    except Exception as e:
        logging.error(f"Unexpected error in summarize_with_tabbyapi: {e}")
        return f"Unexpected error in summarization process: {str(e)}"

def summarize_with_vllm(

        input_data: Union[str, dict, list],

        custom_prompt_input: str,

        api_key: str = None,

        model: str = None,

        system_prompt: str = None,

        temp: float = 0.7,

        vllm_api_url: str = "http://127.0.0.1:8000/v1/chat/completions"

) -> str:
    logging.debug("vLLM: Summarization process starting...")
    try:
        logging.debug("vLLM: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            vllm_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                vllm_api_key = api_key
                logging.info("vLLM: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                vllm_api_key = loaded_config_data['api_keys'].get('vllm')
                if vllm_api_key:
                    logging.info("vLLM: Using API key from config file")
                else:
                    logging.warning("vLLM: No API key found in config file")

        logging.debug(f"vLLM: Using API Key: {vllm_api_key[:5]}...{vllm_api_key[-5:]}")
        # Process input data
        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("vLLM: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("vLLM: Using provided data for summarization")
            data = input_data

        logging.debug(f"vLLM: Type of data: {type(data)}")

        # Extract text for summarization
        if isinstance(data, dict) and 'summary' in data:
            logging.debug("vLLM: Summary already exists in the loaded data")
            return data['summary']
        elif isinstance(data, list):
            text = extract_text_from_segments(data)
        elif isinstance(data, str):
            text = data
        elif isinstance(data, dict):
            text = json.dumps(data)
        else:
            raise ValueError("Invalid input data format")

        logging.debug(f"vLLM: Extracted text (showing first 500 chars): {text[:500]}...")

        if system_prompt is None:
            system_prompt = "You are a helpful AI assistant."

        if custom_prompt_input is None:
            custom_prompt_input = f"{summarizer_prompt}\n\n\n\n{text}"
        else:
            custom_prompt_input = f"{custom_prompt_input}\n\n\n\n{text}"

        model = model or loaded_config_data['models']['vllm']
        if system_prompt is None:
            system_prompt = "You are a helpful AI assistant."

        # Prepare the API request
        headers = {
            "Content-Type": "application/json"
        }

        payload = {
            "model": model,
            "messages": [
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": f"{custom_prompt_input}\n\n{text}"}
            ]
        }

        # Make the API call
        logging.debug(f"vLLM: Sending request to {vllm_api_url}")
        response = requests.post(vllm_api_url, headers=headers, json=payload)

        # Check for successful response
        response.raise_for_status()

        # Extract and return the summary
        response_data = response.json()
        if 'choices' in response_data and len(response_data['choices']) > 0:
            summary = response_data['choices'][0]['message']['content']
            logging.debug("vLLM: Summarization successful")
            logging.debug(f"vLLM: Summary (first 500 chars): {summary[:500]}...")
            return summary
        else:
            raise ValueError("Unexpected response format from vLLM API")

    except requests.RequestException as e:
        logging.error(f"vLLM: API request failed: {str(e)}")
        return f"Error: vLLM API request failed - {str(e)}"
    except json.JSONDecodeError as e:
        logging.error(f"vLLM: Failed to parse API response: {str(e)}")
        return f"Error: Failed to parse vLLM API response - {str(e)}"
    except Exception as e:
        logging.error(f"vLLM: Unexpected error during summarization: {str(e)}")
        return f"Error: Unexpected error during vLLM summarization - {str(e)}"


def summarize_with_ollama(

    input_data,

    custom_prompt,

    api_url="http://127.0.0.1:11434/v1/chat/completions",

    api_key=None,

    temp=None,

    system_message=None,

    model=None,

    max_retries=5,

    retry_delay=20

):
    try:
        logging.debug("Ollama: Loading and validating configurations")
        loaded_config_data = load_and_log_configs()
        if loaded_config_data is None:
            logging.error("Failed to load configuration data")
            ollama_api_key = None
        else:
            # Prioritize the API key passed as a parameter
            if api_key and api_key.strip():
                ollama_api_key = api_key
                logging.info("Ollama: Using API key provided as parameter")
            else:
                # If no parameter is provided, use the key from the config
                ollama_api_key = loaded_config_data['api_keys'].get('ollama')
                if ollama_api_key:
                    logging.info("Ollama: Using API key from config file")
                else:
                    logging.warning("Ollama: No API key found in config file")

            # Set model from parameter or config
            if model is None:
                model = loaded_config_data['models'].get('ollama')
                if model is None:
                    logging.error("Ollama: Model not found in config file")
                    return "Ollama: Model not found in config file"

            # Set api_url from parameter or config
            if api_url is None:
                api_url = loaded_config_data['local_api_ip'].get('ollama')
                if api_url is None:
                    logging.error("Ollama: API URL not found in config file")
                    return "Ollama: API URL not found in config file"

        # Load transcript
        logging.debug("Ollama: Loading JSON data")
        if isinstance(input_data, str) and os.path.isfile(input_data):
            logging.debug("Ollama: Loading json data for summarization")
            with open(input_data, 'r') as file:
                data = json.load(file)
        else:
            logging.debug("Ollama: Using provided string data for summarization")
            data = input_data

        logging.debug(f"Ollama: Loaded data: {data}")
        logging.debug(f"Ollama: Type of data: {type(data)}")

        if isinstance(data, dict) and 'summary' in data:
            # If the loaded data is a dictionary and already contains a summary, return it
            logging.debug("Ollama: Summary already exists in the loaded data")
            return data['summary']

        # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
        if isinstance(data, list):
            segments = data
            text = extract_text_from_segments(segments)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError("Ollama: Invalid input data format")

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }
        if ollama_api_key and len(ollama_api_key) > 5:
            headers['Authorization'] = f'Bearer {ollama_api_key}'

        ollama_prompt = f"{custom_prompt}\n\n{text}"
        if system_message is None:
            system_message = "You are a helpful AI assistant."
        logging.debug(f"Ollama: Prompt being sent is: {ollama_prompt}")

        data_payload = {
            "model": model,
            "messages": [
                {
                    "role": "system",
                    "content": system_message
                },
                {
                    "role": "user",
                    "content": ollama_prompt
                }
            ],
            'temperature': temp
        }

        for attempt in range(1, max_retries + 1):
            logging.debug("Ollama: Submitting request to API endpoint")
            print("Ollama: Submitting request to API endpoint")
            try:
                response = requests.post(api_url, headers=headers, json=data_payload, timeout=30)
                response.raise_for_status()  # Raises HTTPError for bad responses
                response_data = response.json()
            except requests.exceptions.Timeout:
                logging.error("Ollama: Request timed out.")
                return "Ollama: Request timed out."
            except requests.exceptions.HTTPError as http_err:
                logging.error(f"Ollama: HTTP error occurred: {http_err}")
                return f"Ollama: HTTP error occurred: {http_err}"
            except requests.exceptions.RequestException as req_err:
                logging.error(f"Ollama: Request exception: {req_err}")
                return f"Ollama: Request exception: {req_err}"
            except json.JSONDecodeError:
                logging.error("Ollama: Failed to decode JSON response")
                return "Ollama: Failed to decode JSON response."
            except Exception as e:
                logging.error(f"Ollama: An unexpected error occurred: {str(e)}")
                return f"Ollama: An unexpected error occurred: {str(e)}"

            logging.debug(f"API Response Data: {response_data}")

            if response.status_code == 200:
                # Inspect available keys
                available_keys = list(response_data.keys())
                logging.debug(f"Ollama: Available keys in response: {available_keys}")

                # Attempt to retrieve 'response'
                summary = None
                if 'response' in response_data and response_data['response']:
                    summary = response_data['response'].strip()
                elif 'choices' in response_data and len(response_data['choices']) > 0:
                    choice = response_data['choices'][0]
                    if 'message' in choice and 'content' in choice['message']:
                        summary = choice['message']['content'].strip()

                if summary:
                    logging.debug("Ollama: Chat request successful")
                    print("\n\nChat request successful.")
                    return summary
                elif response_data.get('done_reason') == 'load':
                    logging.warning(f"Ollama: Model is loading. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
                    time.sleep(retry_delay)
                else:
                    logging.error("Ollama: API response does not contain 'response' or 'choices'.")
                    return "Ollama: API response does not contain 'response' or 'choices'."
            else:
                logging.error(f"Ollama: API request failed with status code {response.status_code}: {response.text}")
                return f"Ollama: API request failed: {response.text}"

        logging.error("Ollama: Maximum retry attempts reached. Model is still loading.")
        return "Ollama: Maximum retry attempts reached. Model is still loading."

    except Exception as e:
        logging.error("\n\nOllama: Error in processing: %s", str(e))
        return f"Ollama: Error occurred while processing summary with Ollama: {str(e)}"


# FIXME - update to be a summarize request
def summarize_with_custom_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
    loaded_config_data = load_and_log_configs()
    custom_openai_api_key = api_key
    try:
        # API key validation
        if not custom_openai_api_key:
            logging.info("Custom OpenAI API: API key not provided as parameter")
            logging.info("Custom OpenAI API: Attempting to use API key from config file")
            custom_openai_api_key = loaded_config_data['api_keys']['custom_openai_api_key']

        if not custom_openai_api_key:
            logging.error("Custom OpenAI API: API key not found or is empty")
            return "Custom OpenAI API: API Key Not Provided/Found in Config file or is empty"

        logging.debug(f"Custom OpenAI API: Using API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:]}")

        # Input data handling
        logging.debug(f"Custom OpenAI API: Raw input data type: {type(input_data)}")
        logging.debug(f"Custom OpenAI API: Raw input data (first 500 chars): {str(input_data)[:500]}...")

        if isinstance(input_data, str):
            if input_data.strip().startswith('{'):
                # It's likely a JSON string
                logging.debug("Custom OpenAI API: Parsing provided JSON string data for summarization")
                try:
                    data = json.loads(input_data)
                except json.JSONDecodeError as e:
                    logging.error(f"Custom OpenAI API: Error parsing JSON string: {str(e)}")
                    return f"Custom OpenAI API: Error parsing JSON input: {str(e)}"
            elif os.path.isfile(input_data):
                logging.debug("Custom OpenAI API: Loading JSON data from file for summarization")
                with open(input_data, 'r') as file:
                    data = json.load(file)
            else:
                logging.debug("Custom OpenAI API: Using provided string data for summarization")
                data = input_data
        else:
            data = input_data

        logging.debug(f"Custom OpenAI API: Processed data type: {type(data)}")
        logging.debug(f"Custom OpenAI API: Processed data (first 500 chars): {str(data)[:500]}...")

        # Text extraction
        if isinstance(data, dict):
            if 'summary' in data:
                logging.debug("Custom OpenAI API: Summary already exists in the loaded data")
                return data['summary']
            elif 'segments' in data:
                text = extract_text_from_segments(data['segments'])
            else:
                text = json.dumps(data)  # Convert dict to string if no specific format
        elif isinstance(data, list):
            text = extract_text_from_segments(data)
        elif isinstance(data, str):
            text = data
        else:
            raise ValueError(f"Custom OpenAI API: Invalid input data format: {type(data)}")

        logging.debug(f"Custom OpenAI API: Extracted text (first 500 chars): {text[:500]}...")
        logging.debug(f"v: Custom prompt: {custom_prompt_arg}")

        if input_data is None:
            input_data = f"{summarizer_prompt}\n\n\n\n{text}"
        else:
            input_data = f"{input_data}\n\n\n\n{text}"

        openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
        logging.debug(f"Custom OpenAI API: Using model: {openai_model}")

        headers = {
            'Authorization': f'Bearer {custom_openai_api_key}',
            'Content-Type': 'application/json'
        }

        logging.debug(
            f"OpenAI API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:] if custom_openai_api_key else None}")
        logging.debug("Custom OpenAI API: Preparing data + prompt for submittal")
        openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        if temp is None:
            temp = 0.7
        if system_message is None:
            system_message = "You are a helpful AI assistant who does whatever the user requests."
        temp = float(temp)
        data = {
            "model": openai_model,
            "messages": [
                {"role": "system", "content": system_message},
                {"role": "user", "content": openai_prompt}
            ],
            "max_tokens": 4096,
            "temperature": temp
        }

        custom_openai_url = loaded_config_data['Local_api_ip']['custom_openai_api_ip']

        logging.debug("Custom OpenAI API: Posting request")
        response = requests.post(custom_openai_url, headers=headers, json=data)
        logging.debug(f"Custom OpenAI API full API response data: {response}")
        if response.status_code == 200:
            response_data = response.json()
            logging.debug(response_data)
            if 'choices' in response_data and len(response_data['choices']) > 0:
                chat_response = response_data['choices'][0]['message']['content'].strip()
                logging.debug("Custom OpenAI API: Chat Sent successfully")
                logging.debug(f"Custom OpenAI API: Chat response: {chat_response}")
                return chat_response
            else:
                logging.warning("Custom OpenAI API: Chat response not found in the response data")
                return "Custom OpenAI API: Chat not available"
        else:
            logging.error(f"Custom OpenAI API: Chat request failed with status code {response.status_code}")
            logging.error(f"Custom OpenAI API: Error response: {response.text}")
            return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
    except json.JSONDecodeError as e:
        logging.error(f"Custom OpenAI API: Error decoding JSON: {str(e)}", exc_info=True)
        return f"Custom OpenAI API: Error decoding JSON input: {str(e)}"
    except requests.RequestException as e:
        logging.error(f"Custom OpenAI API: Error making API request: {str(e)}", exc_info=True)
        return f"Custom OpenAI API: Error making API request: {str(e)}"
    except Exception as e:
        logging.error(f"Custom OpenAI API: Unexpected error: {str(e)}", exc_info=True)
        return f"Custom OpenAI API: Unexpected error occurred: {str(e)}"


def save_summary_to_file(summary, file_path):
    logging.debug("Now saving summary to file...")
    base_name = os.path.splitext(os.path.basename(file_path))[0]
    summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt')
    os.makedirs(os.path.dirname(summary_file_path), exist_ok=True)
    logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
    with open(summary_file_path, 'w') as file:
        file.write(summary)
    logging.info(f"Summary saved to file: {summary_file_path}")

#
#
#######################################################################################################################