import matplotlib.pyplot as plt import numpy as np from six import BytesIO from PIL import Image import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils from object_detection.utils import ops as utils_op import tarfile import wget import gradio as gr from huggingface_hub import snapshot_download import os PATH_TO_LABELS = 'data/label_map.pbtxt' category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) def pil_image_as_numpy_array(pilimg): img_array = tf.keras.utils.img_to_array(pilimg) img_array = np.expand_dims(img_array, axis=0) return img_array def load_image_into_numpy_array(path): image = None image_data = tf.io.gfile.GFile(path, 'rb').read() image = Image.open(BytesIO(image_data)) return pil_image_as_numpy_array(image) def load_model(): download_dir = snapshot_download(REPO_ID) saved_model_dir = os.path.join(download_dir, "saved_model") detection_model = tf.saved_model.load(saved_model_dir) return detection_model # def load_model2(): # wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz") # tarfile.open("balloon_model.tar.gz").extractall() # model_dir = 'saved_model' # detection_model = tf.saved_model.load(str(model_dir)) # return detection_model # samples_folder = 'test_samples # image_path = 'test_samples/sample_balloon.jpeg # def predict(pilimg): image_np = pil_image_as_numpy_array(pilimg) return predict2(image_np) def predict2(image_np): results = detection_model(image_np) # different object detection models have additional results result = {key:value.numpy() for key,value in results.items()} label_id_offset = 0 image_np_with_detections = image_np.copy() viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections[0], result['detection_boxes'][0], (result['detection_classes'][0] + label_id_offset).astype(int), result['detection_scores'][0], category_index, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=.60, agnostic_mode=False, line_thickness=2) result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0]) return result_pil_img def detect_video(video): # Create a video capture object cap = cv2.VideoCapture(video) # Process frames in a loop while cap.isOpened(): ret, frame = cap.read() if not ret: break # Expand dimensions since model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(frame, axis=0) # Run inference output_dict = detection_model(image_np_expanded) # Extract detections boxes = output_dict['detection_boxes'][0].numpy() scores = output_dict['detection_scores'][0].numpy() classes = output_dict['detection_classes'][0].numpy().astype(np.int64) # Draw bounding boxes and labels image_np_with_detections = viz_utils.visualize_boxes_and_labels_on_image_array( frame, boxes, classes, scores, category_index, use_normalized_coordinates=True, max_boxes_to_draw=20, min_score_thresh=.5, agnostic_mode=False) # Yield the processed frame yield image_np_with_detections # Release resources cap.release() REPO_ID = "apailang/mytfodmodel" detection_model = load_model() # pil_image = Image.open(image_path) # image_arr = pil_image_as_numpy_array(pil_image) # predicted_img = predict(image_arr) # predicted_img.save('predicted.jpg') # gr.Interface(fn=predict, # inputs=gr.Image(type="pil"), # outputs=gr.Image(type="pil"), # title="Image Prediction Interface", # description="Upload a Image for prediction", # ).launch(share=True) a = os.path.join(os.path.dirname(__file__), "data/a.mp4") # Video b = os.path.join(os.path.dirname(__file__), "data/b.mp4") # Video c = os.path.join(os.path.dirname(__file__), "data/c.mp4") # Video demo = gr.Interface( fn=lambda x: x, inputs=gr.Video(), outputs=gr.Video(), examples=[ [a], [b], [c], ], cache_examples=True ) if __name__ == "__main__": demo.launch()