23A464A / app.py
apailang's picture
update gradio video432
c510438
raw
history blame
4.53 kB
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model():
download_dir = snapshot_download(REPO_ID)
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
# def load_model2():
# wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
# tarfile.open("balloon_model.tar.gz").extractall()
# model_dir = 'saved_model'
# detection_model = tf.saved_model.load(str(model_dir))
# return detection_model
# samples_folder = 'test_samples
# image_path = 'test_samples/sample_balloon.jpeg
#
def predict(pilimg):
image_np = pil_image_as_numpy_array(pilimg)
return predict2(image_np)
def predict2(image_np):
results = detection_model(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.60,
agnostic_mode=False,
line_thickness=2)
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img
def detect_video(video):
# Create a video capture object
cap = cv2.VideoCapture(video)
# Process frames in a loop
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Expand dimensions since model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(frame, axis=0)
# Run inference
output_dict = detection_model(image_np_expanded)
# Extract detections
boxes = output_dict['detection_boxes'][0].numpy()
scores = output_dict['detection_scores'][0].numpy()
classes = output_dict['detection_classes'][0].numpy().astype(np.int64)
# Draw bounding boxes and labels
image_np_with_detections = viz_utils.visualize_boxes_and_labels_on_image_array(
frame,
boxes,
classes,
scores,
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=.5,
agnostic_mode=False)
# Yield the processed frame
yield image_np_with_detections
# Release resources
cap.release()
REPO_ID = "apailang/mytfodmodel"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
# gr.Interface(fn=predict,
# inputs=gr.Image(type="pil"),
# outputs=gr.Image(type="pil"),
# title="Image Prediction Interface",
# description="Upload a Image for prediction",
# ).launch(share=True)
# Second interface for video prediction
video_interface = gr.Interface(
fn=detect_video,
inputs=gr.Video(interactive=True),
outputs=gr.Video(),
title="Video Prediction Interface",
description="Upload a video for prediction",
live=True
)
# Launch both interfaces
#image_interface.launch(share=True)
video_interface.launch(share=True)