File size: 2,419 Bytes
e546fea
 
 
 
 
 
 
 
958511f
e546fea
958511f
 
 
 
b218be6
958511f
 
 
 
 
 
 
e546fea
 
958511f
 
3e75999
b218be6
 
2d64873
 
 
 
958511f
e546fea
 
 
 
 
3e75999
 
2d64873
b218be6
2d64873
b218be6
2d64873
 
 
 
 
e546fea
b218be6
 
 
 
 
 
20a2fe0
b218be6
b2b24c7
b218be6
958511f
b218be6
 
 
e546fea
958511f
b218be6
958511f
e546fea
 
b218be6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms

torch.set_float32_matmul_precision(["high", "highest"][0])

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")

transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

def fn(image):
    im = load_img(image, output_type="pil")
    im = im.convert("RGB")
    origin = im.copy()
    processed_image = process(im)
    return (processed_image, origin)

@spaces.GPU
def process(image):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to("cuda")
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image

def process_file(f):
    name_path = f.rsplit(".", 1)[0] + ".png"
    im = load_img(f, output_type="pil")
    im = im.convert("RGB")
    transparent = process(im)
    transparent.save(name_path)
    return name_path

slider1 = ImageSlider(label="Processed Image", type="pil")
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
image_upload = gr.Image(label="Upload an image")
image_file_upload = gr.Image(label="Upload an image", type="filepath")
url_input = gr.Textbox(label="Paste an image URL")
output_file = gr.File(label="Output PNG File")

# Example images
chameleon = load_img("butterfly.jpg", output_type="pil")
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"

tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image")
tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text")
tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png")

demo = gr.TabbedInterface(
    [tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool"
)

if __name__ == "__main__":
    demo.launch(show_error=True)