#from transformers import AutoModel, AutoTokenizer import json import os import subprocess from pathlib import Path import gradio as gr import librosa import numpy as np import torch from demucs.apply import apply_model from demucs.pretrained import DEFAULT_MODEL, get_model from huggingface_hub import hf_hub_download, list_repo_files from so_vits_svc_fork.hparams import HParams from so_vits_svc_fork.inference.core import Svc # Get the Hugging Face token from the environment variable #token = os.getenv('HF_TOKEN') # Instantiate the Hugging Face model #model_names = ["nijisakai/JayChou","nijisakai/sunyanzi","nijisakai/linyilian","nijisakai/wangjie"] #tokenizers = ["nijisakai/JayChou","nijisakai/sunyanzi","nijisakai/linyilian","nijisakai/wangjie"] #models = [AutoModel.from_pretrained(model_name, use_auth_token=token) for model_name in model_names] ################################################################### # REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME/SETTINGS ################################################################### # The Hugging Face Hub repo ID - 在这里修改repo_id,可替换成任何已经训练好的模型! repo_ids = ["nijisakai/testzjl","nijisakai/testsyz","nijisakai/testlyl","nijisakai/testwj","nijisakai/Eric_Cartman"] # If None, Uses latest ckpt in the repo ckpt_name = None # If None, Uses "kmeans.pt" if it exists in the repo cluster_model_name = None # Set the default f0 type to use - use the one it was trained on. # The default for so-vits-svc-fork is "dio". # Options: "crepe", "crepe-tiny", "parselmouth", "dio", "harvest" default_f0_method = "crepe" # The default ratio of cluster inference to SVC inference. # If cluster_model_name is not found in the repo, this is set to 0. default_cluster_infer_ratio = 0.5 # Limit on duration of audio at inference time. increase if you can # In this parent app, we set the limit with an env var to 30 seconds # If you didnt set env var + you go OOM try changing 9e9 to <=300ish duration_limit = int(os.environ.get("MAX_DURATION_SECONDS", 9e9)) ################################################################### models = [] speakers = [] for repo_id in repo_ids: # Figure out the latest generator by taking highest value one. # Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth if ckpt_name is None: latest_id = sorted( [ int(Path(x).stem.split("_")[1]) for x in list_repo_files(repo_id) if x.startswith("G_") and x.endswith(".pth") ] )[-1] ckpt_name = f"G_{latest_id}.pth" cluster_model_name = cluster_model_name or "kmeans.pt" if cluster_model_name in list_repo_files(repo_id): print(f"Found Cluster model - Downloading {cluster_model_name} from {repo_id}") cluster_model_path = hf_hub_download(repo_id, cluster_model_name) else: print(f"Could not find {cluster_model_name} in {repo_id}. Using None") cluster_model_path = None default_cluster_infer_ratio = default_cluster_infer_ratio if cluster_model_path else 0 generator_path = hf_hub_download(repo_id, ckpt_name) config_path = hf_hub_download(repo_id, "config.json") hparams = HParams(**json.loads(Path(config_path).read_text())) speaker = list(hparams.spk.keys()) speakers.extend(speaker) device = "cuda" if torch.cuda.is_available() else "cpu" model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path) models.append(model) # Reset ckpt_name and cluster_model_name for the next iteration ckpt_name = None cluster_model_name = None demucs_model = get_model(DEFAULT_MODEL) def extract_vocal_demucs(model, filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0): wav, sr = librosa.load(filename, mono=False, sr=sr) wav = torch.tensor(wav) ref = wav.mean(0) wav = (wav - ref.mean()) / ref.std() sources = apply_model( model, wav[None], device=device, shifts=shifts, split=split, overlap=overlap, progress=True, num_workers=jobs )[0] sources = sources * ref.std() + ref.mean() vocal_wav = sources[-1] vocal_wav = vocal_wav / max(1.01 * vocal_wav.abs().max(), 1) vocal_wav = vocal_wav.numpy() vocal_wav = librosa.to_mono(vocal_wav) vocal_wav = vocal_wav.T instrumental_wav = sources[:-1].sum(0).numpy().T return vocal_wav, instrumental_wav def download_youtube_clip( video_identifier, start_time, end_time, output_filename, num_attempts=5, url_base="https://www.youtube.com/watch?v=", quiet=False, force=False, ): output_path = Path(output_filename) if output_path.exists(): if not force: return output_path else: output_path.unlink() quiet = "--quiet --no-warnings" if quiet else "" command = f""" yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501 """.strip() attempts = 0 while True: try: _ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: attempts += 1 if attempts == num_attempts: return None else: break if output_path.exists(): return output_path else: return None def predict( speaker, audio, transpose: int = 0, auto_predict_f0: bool = False, cluster_infer_ratio: float = 0, noise_scale: float = 0.4, f0_method: str = "crepe", db_thresh: int = -40, pad_seconds: float = 0.5, chunk_seconds: float = 0.5, absolute_thresh: bool = False, ): model = models[speakers.index(speaker)] audio, _ = librosa.load(audio, sr=model.target_sample, duration=duration_limit) audio = model.infer_silence( audio.astype(np.float32), speaker=speaker, transpose=transpose, auto_predict_f0=auto_predict_f0, cluster_infer_ratio=cluster_infer_ratio, noise_scale=noise_scale, f0_method=f0_method, db_thresh=db_thresh, pad_seconds=pad_seconds, chunk_seconds=chunk_seconds, absolute_thresh=absolute_thresh, ) return model.target_sample, audio def predict_song_from_yt( ytid_or_url, start, end, speaker=speakers[0], transpose: int = 0, auto_predict_f0: bool = False, cluster_infer_ratio: float = 0, noise_scale: float = 0.4, f0_method: str = "dio", db_thresh: int = -40, pad_seconds: float = 0.5, chunk_seconds: float = 0.5, absolute_thresh: bool = False, ): model = models[speakers.index(speaker)] end = min(start + duration_limit, end) original_track_filepath = download_youtube_clip( ytid_or_url, start, end, "track.wav", force=True, url_base="" if ytid_or_url.startswith("http") else "https://www.youtube.com/watch?v=", ) vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath) if transpose != 0: inst_wav = librosa.effects.pitch_shift(inst_wav.T, sr=model.target_sample, n_steps=transpose).T cloned_vox = model.infer_silence( vox_wav.astype(np.float32), speaker=speaker, transpose=transpose, auto_predict_f0=auto_predict_f0, cluster_infer_ratio=cluster_infer_ratio, noise_scale=noise_scale, f0_method=f0_method, db_thresh=db_thresh, pad_seconds=pad_seconds, chunk_seconds=chunk_seconds, absolute_thresh=absolute_thresh, ) full_song = inst_wav + np.expand_dims(cloned_vox, 1) return (model.target_sample, full_song), (model.target_sample, cloned_vox) description = f"""
💡 - 如何使用此程序:在页面上方选择“从B站视频上传”模块,填写视频网址和视频起止时间后,点击“submit”按键即可!您还可以点击页面最下方的示例快速预览效果
""".strip() article = """

注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。

""".strip() interface_mic = gr.Interface( predict, inputs=[ gr.Dropdown(speakers, value=speakers[0], label="🎤AI歌手选择🎶"), gr.Audio(type="filepath", source="microphone", label="请用麦克风上传您想转换的歌曲"), gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;有正负值,+2为升高两个key)"), gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限语音转换时使用", visible=False), gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降 (如果使用,建议0.5左右)"), gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)", visible=False), gr.Dropdown( choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value=default_f0_method, label="模型推理方法 (crepe推理效果最好)", visible=False ), ], outputs="audio", cache_examples=False, title="🌊💕🎶 - 滔滔AI+音乐:可从B站直接上传素材,无需分离背景音", description=description, article=article, ) interface_file = gr.Interface( predict, inputs=[ gr.Dropdown(speakers, value=speakers[0], label="🎤AI歌手选择🎶"), gr.Audio(type="filepath", source="upload", label="请上传您想转换的歌曲 (仅人声部分)"), gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;有正负值,+2为升高两个key)"), gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限语音转换时使用", visible=False), gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降 (如果使用,建议0.5左右)"), gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)", visible=False), gr.Dropdown( choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value=default_f0_method, label="模型推理方法 (crepe推理效果最好)", visible=False ), ], outputs="audio", cache_examples=False, title="🌊💕🎶 可从B站直接上传素材,无需分离背景音", description=description, article=article, ) interface_yt = gr.Interface( predict_song_from_yt, inputs=[ gr.Textbox( label="Bilibili网址", info="请填写含有您喜欢歌曲的Bilibili网址,可直接填写相应的BV号" ), gr.Number(value=0, label="起始时间 (秒)"), gr.Number(value=15, label="结束时间 (秒)"), gr.Dropdown(speakers, value=speakers[0], label="🎤AI歌手选择🎶"), gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;有正负值,+2为升高两个key)"), gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限语音转换时使用", visible=False), gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降"), gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)", visible=False), gr.Dropdown( choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value=default_f0_method, label="模型推理方法 (crepe推理效果最好)", visible=False ), ], outputs=[gr.Audio(label="AI歌手+伴奏🎵"), gr.Audio(label="AI歌手人声部分🎤")], title="🌊💕🎶 - 可从B站直接上传素材,无需分离背景音", description=description, article=article, cache_examples=False, ) interface = gr.TabbedInterface( [interface_yt, interface_mic, interface_file], ["📺 - 从B站视频上传 ⭐推荐⭐", "🎙️ - 从麦克风上传", "🎵 - 从文件上传"], ) if __name__ == "__main__": interface.launch(show_error=True,share=True)