Spaces:
Runtime error
Runtime error
File size: 13,856 Bytes
12e4312 51604a3 2b28929 51604a3 2b28929 b902abf 2b28929 eb7e85b 2b28929 eb7e85b 2b28929 eb7e85b 2b28929 eb7e85b 2b28929 67e06ea 2b28929 12e4312 387abab 5b2a83c f06136b ffea720 eb7e85b bd069b2 eb7e85b 608bb92 1f54f90 eb7e85b 004a828 aaf6873 2fae0ef ffea720 2fae0ef ffea720 aaf6873 1d3811a aaf6873 a920567 aaf6873 c84f8d3 aaf6873 a920567 aaf6873 5d6a04e aaf6873 6d7f1ec aaf6873 c84f8d3 aaf6873 1d3811a aaf6873 1d3811a 5d6a04e aaf6873 1d3811a aaf6873 eb7e85b aaf6873 608bb92 aaf6873 4370d02 aaf6873 3d93f92 aaf6873 608bb92 aaf6873 4deb1ff 4776803 4deb1ff 4776803 4deb1ff aaf6873 4deb1ff aaf6873 608bb92 aaf6873 608bb92 aaf6873 3d93f92 aaf6873 12e4312 879cbf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import json
import os
import subprocess
from pathlib import Path
import gradio as gr
import librosa
import numpy as np
import torch
from demucs.apply import apply_model
from demucs.pretrained import DEFAULT_MODEL, get_model
from huggingface_hub import hf_hub_download, list_repo_files
from so_vits_svc_fork.hparams import HParams
from so_vits_svc_fork.inference.core import Svc
from huggingface_hub import create_repo, upload_folder, login, list_repo_files, delete_file
os.environ["HF_TOKEN"] = "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"
if os.environ.get("HF_TOKEN"):
login(os.environ.get("HF_TOKEN"))
###################################################################
# REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME/SETTINGS
###################################################################
# The Hugging Face Hub repo ID - 在这里修改repo_id,可替换成任何已经训练好的模型!
repo_ids = ["nijisakai/testzjl","nijisakai/testsyz","nijisakai/huangrh","nijisakai/testwj","nijisakai/Eric_Cartman"]
# If None, Uses latest ckpt in the repo
ckpt_name = None
# If None, Uses "kmeans.pt" if it exists in the repo
cluster_model_name = None
# Set the default f0 type to use - use the one it was trained on.
# The default for so-vits-svc-fork is "dio".
# Options: "crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
default_f0_method = "crepe"
# The default ratio of cluster inference to SVC inference.
# If cluster_model_name is not found in the repo, this is set to 0.
default_cluster_infer_ratio = 0.5
# Limit on duration of audio at inference time. increase if you can
# In this parent app, we set the limit with an env var to 30 seconds
# If you didnt set env var + you go OOM try changing 9e9 to <=300ish
duration_limit = int(os.environ.get("MAX_DURATION_SECONDS", 9e9))
###################################################################
models = []
speakers = []
for repo_id in repo_ids:
# Figure out the latest generator by taking highest value one.
# Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth
if ckpt_name is None:
latest_id = sorted(
[
int(Path(x).stem.split("_")[1])
for x in list_repo_files(repo_id)
if x.startswith("G_") and x.endswith(".pth")
]
)[-1]
ckpt_name = f"G_{latest_id}.pth"
cluster_model_name = cluster_model_name or "kmeans.pt"
if cluster_model_name in list_repo_files(repo_id):
print(f"Found Cluster model - Downloading {cluster_model_name} from {repo_id}")
cluster_model_path = hf_hub_download(repo_id, cluster_model_name)
else:
print(f"Could not find {cluster_model_name} in {repo_id}. Using None")
cluster_model_path = None
default_cluster_infer_ratio = default_cluster_infer_ratio if cluster_model_path else 0
generator_path = hf_hub_download(repo_id, ckpt_name)
config_path = hf_hub_download(repo_id, "config.json")
hparams = HParams(**json.loads(Path(config_path).read_text()))
speaker = list(hparams.spk.keys())
speakers.extend(speaker)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path)
models.append(model)
# Reset ckpt_name and cluster_model_name for the next iteration
ckpt_name = None
cluster_model_name = None
demucs_model = get_model(DEFAULT_MODEL)
def extract_vocal_demucs(model, filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):
wav, sr = librosa.load(filename, mono=False, sr=sr)
wav = torch.tensor(wav)
ref = wav.mean(0)
wav = (wav - ref.mean()) / ref.std()
sources = apply_model(
model, wav[None], device=device, shifts=shifts, split=split, overlap=overlap, progress=True, num_workers=jobs
)[0]
sources = sources * ref.std() + ref.mean()
vocal_wav = sources[-1]
vocal_wav = vocal_wav / max(1.01 * vocal_wav.abs().max(), 1)
vocal_wav = vocal_wav.numpy()
vocal_wav = librosa.to_mono(vocal_wav)
vocal_wav = vocal_wav.T
instrumental_wav = sources[:-1].sum(0).numpy().T
return vocal_wav, instrumental_wav
def download_youtube_clip(
video_identifier,
start_time,
end_time,
output_filename,
num_attempts=5,
url_base="https://www.youtube.com/watch?v=",
quiet=False,
force=False,
):
output_path = Path(output_filename)
if output_path.exists():
if not force:
return output_path
else:
output_path.unlink()
quiet = "--quiet --no-warnings" if quiet else ""
command = f"""
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501
""".strip()
attempts = 0
while True:
try:
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError:
attempts += 1
if attempts == num_attempts:
return None
else:
break
if output_path.exists():
return output_path
else:
return None
def predict(
speaker,
audio,
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: str = "crepe",
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
):
model = models[speakers.index(speaker)]
audio, _ = librosa.load(audio, sr=model.target_sample, duration=duration_limit)
audio = model.infer_silence(
audio.astype(np.float32),
speaker=speaker,
transpose=transpose,
auto_predict_f0=auto_predict_f0,
cluster_infer_ratio=cluster_infer_ratio,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=absolute_thresh,
)
return model.target_sample, audio
def predict_song_from_yt(
ytid_or_url,
start,
end,
speaker=speakers[0],
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: str = "dio",
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
):
model = models[speakers.index(speaker)]
end = min(start + duration_limit, end)
original_track_filepath = download_youtube_clip(
ytid_or_url,
start,
end,
"track.wav",
force=True,
url_base="" if ytid_or_url.startswith("http") else "https://www.youtube.com/watch?v=",
)
vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath)
if transpose != 0:
inst_wav = librosa.effects.pitch_shift(inst_wav.T, sr=model.target_sample, n_steps=transpose).T
cloned_vox = model.infer_silence(
vox_wav.astype(np.float32),
speaker=speaker,
transpose=transpose,
auto_predict_f0=auto_predict_f0,
cluster_infer_ratio=cluster_infer_ratio,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=absolute_thresh,
)
full_song = inst_wav + np.expand_dims(cloned_vox, 1)
return (model.target_sample, full_song), (model.target_sample, cloned_vox)
description = f"""
<center>💡 - 如何使用此程序:在页面上方选择“从B站视频上传”模块,填写视频网址和视频起止时间后,点击“submit”按键即可!您还可以点击页面最下方的示例快速预览效果</center>
""".strip()
article = """
<p style='text-align: center'> 注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。
</p>
""".strip()
interface_mic = gr.Interface(
predict,
inputs=[
gr.Dropdown(speakers, value=speakers[0], label="🎤AI歌手选择🎶"),
gr.Audio(type="filepath", source="microphone", label="请用麦克风上传您想转换的歌曲"),
gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;有正负值,+2为升高两个key)"),
gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限语音转换时使用", visible=False),
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降 (如果使用,建议0.5左右)"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)", visible=False),
gr.Dropdown(
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
value=default_f0_method,
label="模型推理方法 (crepe推理效果最好)", visible=False
),
],
outputs="audio",
cache_examples=False,
title="可从B站直接上传素材,无需分离背景音",
description=description,
article=article,
)
interface_file = gr.Interface(
predict,
inputs=[
gr.Dropdown(speakers, value=speakers[0], label="🎤AI歌手选择🎶"),
gr.Audio(type="filepath", source="upload", label="请上传您想转换的歌曲 (仅人声部分)"),
gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;有正负值,+2为升高两个key)"),
gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限语音转换时使用", visible=False),
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降 (如果使用,建议0.5左右)"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)", visible=False),
gr.Dropdown(
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
value=default_f0_method,
label="模型推理方法 (crepe推理效果最好)", visible=False
),
],
outputs="audio",
cache_examples=False,
title="🌊💕🎶 可从B站直接上传素材,无需分离背景音",
description=description,
article=article,
)
def combined_output(
ytid_or_url,
start,
end,
speaker=speakers[0],
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: str = "dio",
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
):
# 调用原来的函数
full_song_output, cloned_vox_output = predict_song_from_yt(
ytid_or_url,
start,
end,
speaker,
transpose,
auto_predict_f0,
cluster_infer_ratio,
noise_scale,
f0_method,
db_thresh,
pad_seconds,
chunk_seconds,
absolute_thresh,
)
# 这里我们直接提取人声和伴奏,因为它们已经在predict_song_from_yt中被提取
original_track_filepath = download_youtube_clip(
ytid_or_url, start, end, "track.wav", force=True,
url_base="" if ytid_or_url.startswith("http") else "https://www.youtube.com/watch?v="
)
vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath)
# 返回所有输出
return full_song_output, cloned_vox_output, (model.target_sample, vox_wav), (model.target_sample, inst_wav)
interface_yt = gr.Interface(
# predict_song_from_yt,
combined_output,
inputs=[
gr.Textbox(
label="Bilibili网址", info="请填写含有您喜欢歌曲的Bilibili网址,可直接填写相应的BV号"
),
gr.Number(value=0, label="起始时间 (秒)"),
gr.Number(value=15, label="结束时间 (秒)"),
gr.Dropdown(speakers, value=speakers[0], label="🎤AI歌手选择🎶"),
gr.Slider(-12, 12, value=0, step=1, label="变调 (默认为0;有正负值,+2为升高两个key)"),
gr.Checkbox(False, label="是否开启自动f0预测", info="勾选即为开启;配合聚类模型f0预测效果更好,仅限语音转换时使用", visible=False),
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="聚类模型混合比例", info="0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale (建议保持不变)", visible=False),
gr.Dropdown(
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
value=default_f0_method,
label="模型推理方法 (crepe推理效果最好)", visible=False
),
],
outputs=[gr.Audio(label="AI歌手+伴奏🎵"), gr.Audio(label="AI歌手人声部分🎤"),gr.Audio(label="原视频人声"),gr.Audio(label="原视频伴奏")],
title="🌊💕🎶 - 可从B站直接上传素材,无需分离背景音",
description=description,
article=article,
cache_examples=False,
)
interface = gr.TabbedInterface(
[interface_yt, interface_mic, interface_file],
["📺 - 从B站视频上传 ⭐推荐⭐", "🎙️ - 从麦克风上传", "🎵 - 从文件上传"],
)
if __name__ == "__main__":
interface.launch(show_error=True) |