|
"""This script defines deep neural networks for Deep3DFaceRecon_pytorch |
|
""" |
|
|
|
import os |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from torch.nn import init |
|
import functools |
|
from torch.optim import lr_scheduler |
|
import torch |
|
from torch import Tensor |
|
import torch.nn as nn |
|
try: |
|
from torch.hub import load_state_dict_from_url |
|
except ImportError: |
|
from torch.utils.model_zoo import load_url as load_state_dict_from_url |
|
from typing import Type, Any, Callable, Union, List, Optional |
|
from .arcface_torch.backbones import get_model |
|
from kornia.geometry import warp_affine |
|
|
|
def resize_n_crop(image, M, dsize=112): |
|
|
|
|
|
return warp_affine(image, M, dsize=(dsize, dsize), align_corners=True) |
|
|
|
def filter_state_dict(state_dict, remove_name='fc'): |
|
new_state_dict = {} |
|
for key in state_dict: |
|
if remove_name in key: |
|
continue |
|
new_state_dict[key] = state_dict[key] |
|
return new_state_dict |
|
|
|
def get_scheduler(optimizer, opt): |
|
"""Return a learning rate scheduler |
|
|
|
Parameters: |
|
optimizer -- the optimizer of the network |
|
opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions. |
|
opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine |
|
|
|
For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. |
|
See https://pytorch.org/docs/stable/optim.html for more details. |
|
""" |
|
if opt.lr_policy == 'linear': |
|
def lambda_rule(epoch): |
|
lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs + 1) |
|
return lr_l |
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) |
|
elif opt.lr_policy == 'step': |
|
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_epochs, gamma=0.2) |
|
elif opt.lr_policy == 'plateau': |
|
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) |
|
elif opt.lr_policy == 'cosine': |
|
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) |
|
else: |
|
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) |
|
return scheduler |
|
|
|
|
|
def define_net_recon(net_recon, use_last_fc=False, init_path=None): |
|
return ReconNetWrapper(net_recon, use_last_fc=use_last_fc, init_path=init_path) |
|
|
|
def define_net_recog(net_recog, pretrained_path=None): |
|
net = RecogNetWrapper(net_recog=net_recog, pretrained_path=pretrained_path) |
|
net.eval() |
|
return net |
|
|
|
class ReconNetWrapper(nn.Module): |
|
fc_dim=257 |
|
def __init__(self, net_recon, use_last_fc=False, init_path=None): |
|
super(ReconNetWrapper, self).__init__() |
|
self.use_last_fc = use_last_fc |
|
if net_recon not in func_dict: |
|
return NotImplementedError('network [%s] is not implemented', net_recon) |
|
func, last_dim = func_dict[net_recon] |
|
backbone = func(use_last_fc=use_last_fc, num_classes=self.fc_dim) |
|
if init_path and os.path.isfile(init_path): |
|
state_dict = filter_state_dict(torch.load(init_path, map_location='cpu')) |
|
backbone.load_state_dict(state_dict) |
|
print("loading init net_recon %s from %s" %(net_recon, init_path)) |
|
self.backbone = backbone |
|
if not use_last_fc: |
|
self.final_layers = nn.ModuleList([ |
|
conv1x1(last_dim, 80, bias=True), |
|
conv1x1(last_dim, 64, bias=True), |
|
conv1x1(last_dim, 80, bias=True), |
|
conv1x1(last_dim, 3, bias=True), |
|
conv1x1(last_dim, 27, bias=True), |
|
conv1x1(last_dim, 2, bias=True), |
|
conv1x1(last_dim, 1, bias=True) |
|
]) |
|
for m in self.final_layers: |
|
nn.init.constant_(m.weight, 0.) |
|
nn.init.constant_(m.bias, 0.) |
|
|
|
def forward(self, x): |
|
x = self.backbone(x) |
|
if not self.use_last_fc: |
|
output = [] |
|
for layer in self.final_layers: |
|
output.append(layer(x)) |
|
x = torch.flatten(torch.cat(output, dim=1), 1) |
|
return x |
|
|
|
|
|
class RecogNetWrapper(nn.Module): |
|
def __init__(self, net_recog, pretrained_path=None, input_size=112): |
|
super(RecogNetWrapper, self).__init__() |
|
net = get_model(name=net_recog, fp16=False) |
|
if pretrained_path: |
|
state_dict = torch.load(pretrained_path, map_location='cpu') |
|
net.load_state_dict(state_dict) |
|
print("loading pretrained net_recog %s from %s" %(net_recog, pretrained_path)) |
|
for param in net.parameters(): |
|
param.requires_grad = False |
|
self.net = net |
|
self.preprocess = lambda x: 2 * x - 1 |
|
self.input_size=input_size |
|
|
|
def forward(self, image, M): |
|
image = self.preprocess(resize_n_crop(image, M, self.input_size)) |
|
id_feature = F.normalize(self.net(image), dim=-1, p=2) |
|
return id_feature |
|
|
|
|
|
|
|
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', |
|
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', |
|
'wide_resnet50_2', 'wide_resnet101_2'] |
|
|
|
|
|
model_urls = { |
|
'resnet18': 'https://download.pytorch.org/models/resnet18-f37072fd.pth', |
|
'resnet34': 'https://download.pytorch.org/models/resnet34-b627a593.pth', |
|
'resnet50': 'https://download.pytorch.org/models/resnet50-0676ba61.pth', |
|
'resnet101': 'https://download.pytorch.org/models/resnet101-63fe2227.pth', |
|
'resnet152': 'https://download.pytorch.org/models/resnet152-394f9c45.pth', |
|
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', |
|
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', |
|
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', |
|
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', |
|
} |
|
|
|
|
|
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=dilation, groups=groups, bias=False, dilation=dilation) |
|
|
|
|
|
def conv1x1(in_planes: int, out_planes: int, stride: int = 1, bias: bool = False) -> nn.Conv2d: |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=bias) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion: int = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None |
|
) -> None: |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError('BasicBlock only supports groups=1 and base_width=64') |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion: int = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None |
|
) -> None: |
|
super(Bottleneck, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
layers: List[int], |
|
num_classes: int = 1000, |
|
zero_init_residual: bool = False, |
|
use_last_fc: bool = False, |
|
groups: int = 1, |
|
width_per_group: int = 64, |
|
replace_stride_with_dilation: Optional[List[bool]] = None, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None |
|
) -> None: |
|
super(ResNet, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError("replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) |
|
self.use_last_fc = use_last_fc |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, |
|
dilate=replace_stride_with_dilation[0]) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, |
|
dilate=replace_stride_with_dilation[1]) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, |
|
dilate=replace_stride_with_dilation[2]) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
if self.use_last_fc: |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, |
|
stride: int = 1, dilate: bool = False) -> nn.Sequential: |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample, self.groups, |
|
self.base_width, previous_dilation, norm_layer)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, groups=self.groups, |
|
base_width=self.base_width, dilation=self.dilation, |
|
norm_layer=norm_layer)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor: |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
if self.use_last_fc: |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
return x |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self._forward_impl(x) |
|
|
|
|
|
def _resnet( |
|
arch: str, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
layers: List[int], |
|
pretrained: bool, |
|
progress: bool, |
|
**kwargs: Any |
|
) -> ResNet: |
|
model = ResNet(block, layers, **kwargs) |
|
if pretrained: |
|
state_dict = load_state_dict_from_url(model_urls[arch], |
|
progress=progress) |
|
model.load_state_dict(state_dict) |
|
return model |
|
|
|
|
|
def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: |
|
r"""ResNet-18 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, |
|
**kwargs) |
|
|
|
|
|
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: |
|
r"""ResNet-34 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, |
|
**kwargs) |
|
|
|
|
|
def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: |
|
r"""ResNet-50 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, |
|
**kwargs) |
|
|
|
|
|
def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: |
|
r"""ResNet-101 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, |
|
**kwargs) |
|
|
|
|
|
def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: |
|
r"""ResNet-152 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, |
|
**kwargs) |
|
|
|
|
|
def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: |
|
r"""ResNeXt-50 32x4d model from |
|
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
kwargs['groups'] = 32 |
|
kwargs['width_per_group'] = 4 |
|
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], |
|
pretrained, progress, **kwargs) |
|
|
|
|
|
def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: |
|
r"""ResNeXt-101 32x8d model from |
|
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
kwargs['groups'] = 32 |
|
kwargs['width_per_group'] = 8 |
|
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], |
|
pretrained, progress, **kwargs) |
|
|
|
|
|
def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: |
|
r"""Wide ResNet-50-2 model from |
|
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_. |
|
|
|
The model is the same as ResNet except for the bottleneck number of channels |
|
which is twice larger in every block. The number of channels in outer 1x1 |
|
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 |
|
channels, and in Wide ResNet-50-2 has 2048-1024-2048. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
kwargs['width_per_group'] = 64 * 2 |
|
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], |
|
pretrained, progress, **kwargs) |
|
|
|
|
|
def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: |
|
r"""Wide ResNet-101-2 model from |
|
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_. |
|
|
|
The model is the same as ResNet except for the bottleneck number of channels |
|
which is twice larger in every block. The number of channels in outer 1x1 |
|
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 |
|
channels, and in Wide ResNet-50-2 has 2048-1024-2048. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
kwargs['width_per_group'] = 64 * 2 |
|
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], |
|
pretrained, progress, **kwargs) |
|
|
|
|
|
func_dict = { |
|
'resnet18': (resnet18, 512), |
|
'resnet50': (resnet50, 2048) |
|
} |
|
|