|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from kornia.geometry import warp_affine |
|
import torch.nn.functional as F |
|
|
|
def resize_n_crop(image, M, dsize=112): |
|
|
|
|
|
return warp_affine(image, M, dsize=(dsize, dsize), align_corners=True) |
|
|
|
|
|
class PerceptualLoss(nn.Module): |
|
def __init__(self, recog_net, input_size=112): |
|
super(PerceptualLoss, self).__init__() |
|
self.recog_net = recog_net |
|
self.preprocess = lambda x: 2 * x - 1 |
|
self.input_size=input_size |
|
def forward(imageA, imageB, M): |
|
""" |
|
1 - cosine distance |
|
Parameters: |
|
imageA --torch.tensor (B, 3, H, W), range (0, 1) , RGB order |
|
imageB --same as imageA |
|
""" |
|
|
|
imageA = self.preprocess(resize_n_crop(imageA, M, self.input_size)) |
|
imageB = self.preprocess(resize_n_crop(imageB, M, self.input_size)) |
|
|
|
|
|
self.recog_net.eval() |
|
|
|
id_featureA = F.normalize(self.recog_net(imageA), dim=-1, p=2) |
|
id_featureB = F.normalize(self.recog_net(imageB), dim=-1, p=2) |
|
cosine_d = torch.sum(id_featureA * id_featureB, dim=-1) |
|
|
|
return torch.sum(1 - cosine_d) / cosine_d.shape[0] |
|
|
|
def perceptual_loss(id_featureA, id_featureB): |
|
cosine_d = torch.sum(id_featureA * id_featureB, dim=-1) |
|
|
|
return torch.sum(1 - cosine_d) / cosine_d.shape[0] |
|
|
|
|
|
def photo_loss(imageA, imageB, mask, eps=1e-6): |
|
""" |
|
l2 norm (with sqrt, to ensure backward stabililty, use eps, otherwise Nan may occur) |
|
Parameters: |
|
imageA --torch.tensor (B, 3, H, W), range (0, 1), RGB order |
|
imageB --same as imageA |
|
""" |
|
loss = torch.sqrt(eps + torch.sum((imageA - imageB) ** 2, dim=1, keepdims=True)) * mask |
|
loss = torch.sum(loss) / torch.max(torch.sum(mask), torch.tensor(1.0).to(mask.device)) |
|
return loss |
|
|
|
def landmark_loss(predict_lm, gt_lm, weight=None): |
|
""" |
|
weighted mse loss |
|
Parameters: |
|
predict_lm --torch.tensor (B, 68, 2) |
|
gt_lm --torch.tensor (B, 68, 2) |
|
weight --numpy.array (1, 68) |
|
""" |
|
if not weight: |
|
weight = np.ones([68]) |
|
weight[28:31] = 20 |
|
weight[-8:] = 20 |
|
weight = np.expand_dims(weight, 0) |
|
weight = torch.tensor(weight).to(predict_lm.device) |
|
loss = torch.sum((predict_lm - gt_lm)**2, dim=-1) * weight |
|
loss = torch.sum(loss) / (predict_lm.shape[0] * predict_lm.shape[1]) |
|
return loss |
|
|
|
|
|
|
|
def reg_loss(coeffs_dict, opt=None): |
|
""" |
|
l2 norm without the sqrt, from yu's implementation (mse) |
|
tf.nn.l2_loss https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss |
|
Parameters: |
|
coeffs_dict -- a dict of torch.tensors , keys: id, exp, tex, angle, gamma, trans |
|
|
|
""" |
|
|
|
if opt: |
|
w_id, w_exp, w_tex = opt.w_id, opt.w_exp, opt.w_tex |
|
else: |
|
w_id, w_exp, w_tex = 1, 1, 1, 1 |
|
creg_loss = w_id * torch.sum(coeffs_dict['id'] ** 2) + \ |
|
w_exp * torch.sum(coeffs_dict['exp'] ** 2) + \ |
|
w_tex * torch.sum(coeffs_dict['tex'] ** 2) |
|
creg_loss = creg_loss / coeffs_dict['id'].shape[0] |
|
|
|
|
|
gamma = coeffs_dict['gamma'].reshape([-1, 3, 9]) |
|
gamma_mean = torch.mean(gamma, dim=1, keepdims=True) |
|
gamma_loss = torch.mean((gamma - gamma_mean) ** 2) |
|
|
|
return creg_loss, gamma_loss |
|
|
|
def reflectance_loss(texture, mask): |
|
""" |
|
minimize texture variance (mse), albedo regularization to ensure an uniform skin albedo |
|
Parameters: |
|
texture --torch.tensor, (B, N, 3) |
|
mask --torch.tensor, (N), 1 or 0 |
|
|
|
""" |
|
mask = mask.reshape([1, mask.shape[0], 1]) |
|
texture_mean = torch.sum(mask * texture, dim=1, keepdims=True) / torch.sum(mask) |
|
loss = torch.sum(((texture - texture_mean) * mask)**2) / (texture.shape[0] * torch.sum(mask)) |
|
return loss |
|
|
|
|