|
"""This script defines the parametric 3d face model for Deep3DFaceRecon_pytorch |
|
""" |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from scipy.io import loadmat |
|
from src.face3d.util.load_mats import transferBFM09 |
|
import os |
|
|
|
def perspective_projection(focal, center): |
|
|
|
return np.array([ |
|
focal, 0, center, |
|
0, focal, center, |
|
0, 0, 1 |
|
]).reshape([3, 3]).astype(np.float32).transpose() |
|
|
|
class SH: |
|
def __init__(self): |
|
self.a = [np.pi, 2 * np.pi / np.sqrt(3.), 2 * np.pi / np.sqrt(8.)] |
|
self.c = [1/np.sqrt(4 * np.pi), np.sqrt(3.) / np.sqrt(4 * np.pi), 3 * np.sqrt(5.) / np.sqrt(12 * np.pi)] |
|
|
|
|
|
|
|
class ParametricFaceModel: |
|
def __init__(self, |
|
bfm_folder='./BFM', |
|
recenter=True, |
|
camera_distance=10., |
|
init_lit=np.array([ |
|
0.8, 0, 0, 0, 0, 0, 0, 0, 0 |
|
]), |
|
focal=1015., |
|
center=112., |
|
is_train=True, |
|
default_name='BFM_model_front.mat'): |
|
|
|
if not os.path.isfile(os.path.join(bfm_folder, default_name)): |
|
transferBFM09(bfm_folder) |
|
|
|
model = loadmat(os.path.join(bfm_folder, default_name)) |
|
|
|
self.mean_shape = model['meanshape'].astype(np.float32) |
|
|
|
self.id_base = model['idBase'].astype(np.float32) |
|
|
|
self.exp_base = model['exBase'].astype(np.float32) |
|
|
|
self.mean_tex = model['meantex'].astype(np.float32) |
|
|
|
self.tex_base = model['texBase'].astype(np.float32) |
|
|
|
self.point_buf = model['point_buf'].astype(np.int64) - 1 |
|
|
|
self.face_buf = model['tri'].astype(np.int64) - 1 |
|
|
|
self.keypoints = np.squeeze(model['keypoints']).astype(np.int64) - 1 |
|
|
|
if is_train: |
|
|
|
self.front_mask = np.squeeze(model['frontmask2_idx']).astype(np.int64) - 1 |
|
|
|
self.front_face_buf = model['tri_mask2'].astype(np.int64) - 1 |
|
|
|
self.skin_mask = np.squeeze(model['skinmask']) |
|
|
|
if recenter: |
|
mean_shape = self.mean_shape.reshape([-1, 3]) |
|
mean_shape = mean_shape - np.mean(mean_shape, axis=0, keepdims=True) |
|
self.mean_shape = mean_shape.reshape([-1, 1]) |
|
|
|
self.persc_proj = perspective_projection(focal, center) |
|
self.device = 'cpu' |
|
self.camera_distance = camera_distance |
|
self.SH = SH() |
|
self.init_lit = init_lit.reshape([1, 1, -1]).astype(np.float32) |
|
|
|
|
|
def to(self, device): |
|
self.device = device |
|
for key, value in self.__dict__.items(): |
|
if type(value).__module__ == np.__name__: |
|
setattr(self, key, torch.tensor(value).to(device)) |
|
|
|
|
|
def compute_shape(self, id_coeff, exp_coeff): |
|
""" |
|
Return: |
|
face_shape -- torch.tensor, size (B, N, 3) |
|
|
|
Parameters: |
|
id_coeff -- torch.tensor, size (B, 80), identity coeffs |
|
exp_coeff -- torch.tensor, size (B, 64), expression coeffs |
|
""" |
|
batch_size = id_coeff.shape[0] |
|
id_part = torch.einsum('ij,aj->ai', self.id_base, id_coeff) |
|
exp_part = torch.einsum('ij,aj->ai', self.exp_base, exp_coeff) |
|
face_shape = id_part + exp_part + self.mean_shape.reshape([1, -1]) |
|
return face_shape.reshape([batch_size, -1, 3]) |
|
|
|
|
|
def compute_texture(self, tex_coeff, normalize=True): |
|
""" |
|
Return: |
|
face_texture -- torch.tensor, size (B, N, 3), in RGB order, range (0, 1.) |
|
|
|
Parameters: |
|
tex_coeff -- torch.tensor, size (B, 80) |
|
""" |
|
batch_size = tex_coeff.shape[0] |
|
face_texture = torch.einsum('ij,aj->ai', self.tex_base, tex_coeff) + self.mean_tex |
|
if normalize: |
|
face_texture = face_texture / 255. |
|
return face_texture.reshape([batch_size, -1, 3]) |
|
|
|
|
|
def compute_norm(self, face_shape): |
|
""" |
|
Return: |
|
vertex_norm -- torch.tensor, size (B, N, 3) |
|
|
|
Parameters: |
|
face_shape -- torch.tensor, size (B, N, 3) |
|
""" |
|
|
|
v1 = face_shape[:, self.face_buf[:, 0]] |
|
v2 = face_shape[:, self.face_buf[:, 1]] |
|
v3 = face_shape[:, self.face_buf[:, 2]] |
|
e1 = v1 - v2 |
|
e2 = v2 - v3 |
|
face_norm = torch.cross(e1, e2, dim=-1) |
|
face_norm = F.normalize(face_norm, dim=-1, p=2) |
|
face_norm = torch.cat([face_norm, torch.zeros(face_norm.shape[0], 1, 3).to(self.device)], dim=1) |
|
|
|
vertex_norm = torch.sum(face_norm[:, self.point_buf], dim=2) |
|
vertex_norm = F.normalize(vertex_norm, dim=-1, p=2) |
|
return vertex_norm |
|
|
|
|
|
def compute_color(self, face_texture, face_norm, gamma): |
|
""" |
|
Return: |
|
face_color -- torch.tensor, size (B, N, 3), range (0, 1.) |
|
|
|
Parameters: |
|
face_texture -- torch.tensor, size (B, N, 3), from texture model, range (0, 1.) |
|
face_norm -- torch.tensor, size (B, N, 3), rotated face normal |
|
gamma -- torch.tensor, size (B, 27), SH coeffs |
|
""" |
|
batch_size = gamma.shape[0] |
|
v_num = face_texture.shape[1] |
|
a, c = self.SH.a, self.SH.c |
|
gamma = gamma.reshape([batch_size, 3, 9]) |
|
gamma = gamma + self.init_lit |
|
gamma = gamma.permute(0, 2, 1) |
|
Y = torch.cat([ |
|
a[0] * c[0] * torch.ones_like(face_norm[..., :1]).to(self.device), |
|
-a[1] * c[1] * face_norm[..., 1:2], |
|
a[1] * c[1] * face_norm[..., 2:], |
|
-a[1] * c[1] * face_norm[..., :1], |
|
a[2] * c[2] * face_norm[..., :1] * face_norm[..., 1:2], |
|
-a[2] * c[2] * face_norm[..., 1:2] * face_norm[..., 2:], |
|
0.5 * a[2] * c[2] / np.sqrt(3.) * (3 * face_norm[..., 2:] ** 2 - 1), |
|
-a[2] * c[2] * face_norm[..., :1] * face_norm[..., 2:], |
|
0.5 * a[2] * c[2] * (face_norm[..., :1] ** 2 - face_norm[..., 1:2] ** 2) |
|
], dim=-1) |
|
r = Y @ gamma[..., :1] |
|
g = Y @ gamma[..., 1:2] |
|
b = Y @ gamma[..., 2:] |
|
face_color = torch.cat([r, g, b], dim=-1) * face_texture |
|
return face_color |
|
|
|
|
|
def compute_rotation(self, angles): |
|
""" |
|
Return: |
|
rot -- torch.tensor, size (B, 3, 3) pts @ trans_mat |
|
|
|
Parameters: |
|
angles -- torch.tensor, size (B, 3), radian |
|
""" |
|
|
|
batch_size = angles.shape[0] |
|
ones = torch.ones([batch_size, 1]).to(self.device) |
|
zeros = torch.zeros([batch_size, 1]).to(self.device) |
|
x, y, z = angles[:, :1], angles[:, 1:2], angles[:, 2:], |
|
|
|
rot_x = torch.cat([ |
|
ones, zeros, zeros, |
|
zeros, torch.cos(x), -torch.sin(x), |
|
zeros, torch.sin(x), torch.cos(x) |
|
], dim=1).reshape([batch_size, 3, 3]) |
|
|
|
rot_y = torch.cat([ |
|
torch.cos(y), zeros, torch.sin(y), |
|
zeros, ones, zeros, |
|
-torch.sin(y), zeros, torch.cos(y) |
|
], dim=1).reshape([batch_size, 3, 3]) |
|
|
|
rot_z = torch.cat([ |
|
torch.cos(z), -torch.sin(z), zeros, |
|
torch.sin(z), torch.cos(z), zeros, |
|
zeros, zeros, ones |
|
], dim=1).reshape([batch_size, 3, 3]) |
|
|
|
rot = rot_z @ rot_y @ rot_x |
|
return rot.permute(0, 2, 1) |
|
|
|
|
|
def to_camera(self, face_shape): |
|
face_shape[..., -1] = self.camera_distance - face_shape[..., -1] |
|
return face_shape |
|
|
|
def to_image(self, face_shape): |
|
""" |
|
Return: |
|
face_proj -- torch.tensor, size (B, N, 2), y direction is opposite to v direction |
|
|
|
Parameters: |
|
face_shape -- torch.tensor, size (B, N, 3) |
|
""" |
|
|
|
face_proj = face_shape @ self.persc_proj |
|
face_proj = face_proj[..., :2] / face_proj[..., 2:] |
|
|
|
return face_proj |
|
|
|
|
|
def transform(self, face_shape, rot, trans): |
|
""" |
|
Return: |
|
face_shape -- torch.tensor, size (B, N, 3) pts @ rot + trans |
|
|
|
Parameters: |
|
face_shape -- torch.tensor, size (B, N, 3) |
|
rot -- torch.tensor, size (B, 3, 3) |
|
trans -- torch.tensor, size (B, 3) |
|
""" |
|
return face_shape @ rot + trans.unsqueeze(1) |
|
|
|
|
|
def get_landmarks(self, face_proj): |
|
""" |
|
Return: |
|
face_lms -- torch.tensor, size (B, 68, 2) |
|
|
|
Parameters: |
|
face_proj -- torch.tensor, size (B, N, 2) |
|
""" |
|
return face_proj[:, self.keypoints] |
|
|
|
def split_coeff(self, coeffs): |
|
""" |
|
Return: |
|
coeffs_dict -- a dict of torch.tensors |
|
|
|
Parameters: |
|
coeffs -- torch.tensor, size (B, 256) |
|
""" |
|
id_coeffs = coeffs[:, :80] |
|
exp_coeffs = coeffs[:, 80: 144] |
|
tex_coeffs = coeffs[:, 144: 224] |
|
angles = coeffs[:, 224: 227] |
|
gammas = coeffs[:, 227: 254] |
|
translations = coeffs[:, 254:] |
|
return { |
|
'id': id_coeffs, |
|
'exp': exp_coeffs, |
|
'tex': tex_coeffs, |
|
'angle': angles, |
|
'gamma': gammas, |
|
'trans': translations |
|
} |
|
def compute_for_render(self, coeffs): |
|
""" |
|
Return: |
|
face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate |
|
face_color -- torch.tensor, size (B, N, 3), in RGB order |
|
landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction |
|
Parameters: |
|
coeffs -- torch.tensor, size (B, 257) |
|
""" |
|
coef_dict = self.split_coeff(coeffs) |
|
face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp']) |
|
rotation = self.compute_rotation(coef_dict['angle']) |
|
|
|
|
|
face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans']) |
|
face_vertex = self.to_camera(face_shape_transformed) |
|
|
|
face_proj = self.to_image(face_vertex) |
|
landmark = self.get_landmarks(face_proj) |
|
|
|
face_texture = self.compute_texture(coef_dict['tex']) |
|
face_norm = self.compute_norm(face_shape) |
|
face_norm_roted = face_norm @ rotation |
|
face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma']) |
|
|
|
return face_vertex, face_texture, face_color, landmark |
|
|
|
def compute_for_render_woRotation(self, coeffs): |
|
""" |
|
Return: |
|
face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate |
|
face_color -- torch.tensor, size (B, N, 3), in RGB order |
|
landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction |
|
Parameters: |
|
coeffs -- torch.tensor, size (B, 257) |
|
""" |
|
coef_dict = self.split_coeff(coeffs) |
|
face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp']) |
|
|
|
|
|
|
|
|
|
face_vertex = self.to_camera(face_shape) |
|
|
|
face_proj = self.to_image(face_vertex) |
|
landmark = self.get_landmarks(face_proj) |
|
|
|
face_texture = self.compute_texture(coef_dict['tex']) |
|
face_norm = self.compute_norm(face_shape) |
|
face_norm_roted = face_norm |
|
face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma']) |
|
|
|
return face_vertex, face_texture, face_color, landmark |
|
|
|
|
|
if __name__ == '__main__': |
|
transferBFM09() |