|
import torch, uuid
|
|
import os, sys, shutil, platform
|
|
from src.facerender.pirender_animate import AnimateFromCoeff_PIRender
|
|
from src.utils.preprocess import CropAndExtract
|
|
from src.test_audio2coeff import Audio2Coeff
|
|
from src.facerender.animate import AnimateFromCoeff
|
|
from src.generate_batch import get_data
|
|
from src.generate_facerender_batch import get_facerender_data
|
|
|
|
from src.utils.init_path import init_path
|
|
|
|
from pydub import AudioSegment
|
|
|
|
|
|
def mp3_to_wav(mp3_filename,wav_filename,frame_rate):
|
|
mp3_file = AudioSegment.from_file(file=mp3_filename)
|
|
mp3_file.set_frame_rate(frame_rate).export(wav_filename,format="wav")
|
|
|
|
|
|
class SadTalker():
|
|
|
|
def __init__(self, checkpoint_path='checkpoints', config_path='src/config', lazy_load=False):
|
|
|
|
if torch.cuda.is_available():
|
|
device = "cuda"
|
|
elif platform.system() == 'Darwin':
|
|
device = "mps"
|
|
else:
|
|
device = "cpu"
|
|
|
|
self.device = device
|
|
|
|
os.environ['TORCH_HOME']= checkpoint_path
|
|
|
|
self.checkpoint_path = checkpoint_path
|
|
self.config_path = config_path
|
|
|
|
|
|
def test(self, source_image, driven_audio, preprocess='crop',
|
|
still_mode=False, use_enhancer=False, batch_size=1, size=256,
|
|
pose_style = 0,
|
|
facerender='facevid2vid',
|
|
exp_scale=1.0,
|
|
use_ref_video = False,
|
|
ref_video = None,
|
|
ref_info = None,
|
|
use_idle_mode = False,
|
|
length_of_audio = 0, use_blink=True,
|
|
result_dir='./results/'):
|
|
|
|
self.sadtalker_paths = init_path(self.checkpoint_path, self.config_path, size, False, preprocess)
|
|
print(self.sadtalker_paths)
|
|
|
|
self.audio_to_coeff = Audio2Coeff(self.sadtalker_paths, self.device)
|
|
self.preprocess_model = CropAndExtract(self.sadtalker_paths, self.device)
|
|
|
|
if facerender == 'facevid2vid' and self.device != 'mps':
|
|
self.animate_from_coeff = AnimateFromCoeff(self.sadtalker_paths, self.device)
|
|
elif facerender == 'pirender' or self.device == 'mps':
|
|
self.animate_from_coeff = AnimateFromCoeff_PIRender(self.sadtalker_paths, self.device)
|
|
facerender = 'pirender'
|
|
else:
|
|
raise(RuntimeError('Unknown model: {}'.format(facerender)))
|
|
|
|
|
|
time_tag = str(uuid.uuid4())
|
|
save_dir = os.path.join(result_dir, time_tag)
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
input_dir = os.path.join(save_dir, 'input')
|
|
os.makedirs(input_dir, exist_ok=True)
|
|
|
|
print(source_image)
|
|
pic_path = os.path.join(input_dir, os.path.basename(source_image))
|
|
shutil.move(source_image, input_dir)
|
|
|
|
if driven_audio is not None and os.path.isfile(driven_audio):
|
|
audio_path = os.path.join(input_dir, os.path.basename(driven_audio))
|
|
|
|
|
|
if '.mp3' in audio_path:
|
|
mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000)
|
|
audio_path = audio_path.replace('.mp3', '.wav')
|
|
else:
|
|
shutil.move(driven_audio, input_dir)
|
|
|
|
elif use_idle_mode:
|
|
audio_path = os.path.join(input_dir, 'idlemode_'+str(length_of_audio)+'.wav')
|
|
from pydub import AudioSegment
|
|
one_sec_segment = AudioSegment.silent(duration=1000*length_of_audio)
|
|
one_sec_segment.export(audio_path, format="wav")
|
|
else:
|
|
print(use_ref_video, ref_info)
|
|
assert use_ref_video == True and ref_info == 'all'
|
|
|
|
if use_ref_video and ref_info == 'all':
|
|
ref_video_videoname = os.path.basename(ref_video)
|
|
audio_path = os.path.join(save_dir, ref_video_videoname+'.wav')
|
|
print('new audiopath:',audio_path)
|
|
|
|
cmd = r"ffmpeg -y -hide_banner -loglevel error -i %s %s"%(ref_video, audio_path)
|
|
os.system(cmd)
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
|
|
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
|
|
os.makedirs(first_frame_dir, exist_ok=True)
|
|
first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(pic_path, first_frame_dir, preprocess, True, size)
|
|
|
|
if first_coeff_path is None:
|
|
raise AttributeError("No face is detected")
|
|
|
|
if use_ref_video:
|
|
print('using ref video for genreation')
|
|
ref_video_videoname = os.path.splitext(os.path.split(ref_video)[-1])[0]
|
|
ref_video_frame_dir = os.path.join(save_dir, ref_video_videoname)
|
|
os.makedirs(ref_video_frame_dir, exist_ok=True)
|
|
print('3DMM Extraction for the reference video providing pose')
|
|
ref_video_coeff_path, _, _ = self.preprocess_model.generate(ref_video, ref_video_frame_dir, preprocess, source_image_flag=False)
|
|
else:
|
|
ref_video_coeff_path = None
|
|
|
|
if use_ref_video:
|
|
if ref_info == 'pose':
|
|
ref_pose_coeff_path = ref_video_coeff_path
|
|
ref_eyeblink_coeff_path = None
|
|
elif ref_info == 'blink':
|
|
ref_pose_coeff_path = None
|
|
ref_eyeblink_coeff_path = ref_video_coeff_path
|
|
elif ref_info == 'pose+blink':
|
|
ref_pose_coeff_path = ref_video_coeff_path
|
|
ref_eyeblink_coeff_path = ref_video_coeff_path
|
|
elif ref_info == 'all':
|
|
ref_pose_coeff_path = None
|
|
ref_eyeblink_coeff_path = None
|
|
else:
|
|
raise('error in refinfo')
|
|
else:
|
|
ref_pose_coeff_path = None
|
|
ref_eyeblink_coeff_path = None
|
|
|
|
|
|
if use_ref_video and ref_info == 'all':
|
|
coeff_path = ref_video_coeff_path
|
|
else:
|
|
batch = get_data(first_coeff_path, audio_path, self.device, ref_eyeblink_coeff_path=ref_eyeblink_coeff_path, still=still_mode, \
|
|
idlemode=use_idle_mode, length_of_audio=length_of_audio, use_blink=use_blink)
|
|
coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
|
|
|
|
|
|
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode, \
|
|
preprocess=preprocess, size=size, expression_scale = exp_scale, facemodel=facerender)
|
|
return_path = self.animate_from_coeff.generate(data, save_dir, pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None, preprocess=preprocess, img_size=size)
|
|
video_name = data['video_name']
|
|
print(f'The generated video is named {video_name} in {save_dir}')
|
|
|
|
del self.preprocess_model
|
|
del self.audio_to_coeff
|
|
del self.animate_from_coeff
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.synchronize()
|
|
|
|
import gc; gc.collect()
|
|
|
|
return return_path
|
|
|
|
|