File size: 10,485 Bytes
585c7ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
"""This script defines the visualizer for Deep3DFaceRecon_pytorch
"""
import numpy as np
import os
import sys
import ntpath
import time
from . import util, html
from subprocess import Popen, PIPE
from torch.utils.tensorboard import SummaryWriter
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256):
"""Save images to the disk.
Parameters:
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
image_path (str) -- the string is used to create image paths
aspect_ratio (float) -- the aspect ratio of saved images
width (int) -- the images will be resized to width x width
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
"""
image_dir = webpage.get_image_dir()
short_path = ntpath.basename(image_path[0])
name = os.path.splitext(short_path)[0]
webpage.add_header(name)
ims, txts, links = [], [], []
for label, im_data in visuals.items():
im = util.tensor2im(im_data)
image_name = '%s/%s.png' % (label, name)
os.makedirs(os.path.join(image_dir, label), exist_ok=True)
save_path = os.path.join(image_dir, image_name)
util.save_image(im, save_path, aspect_ratio=aspect_ratio)
ims.append(image_name)
txts.append(label)
links.append(image_name)
webpage.add_images(ims, txts, links, width=width)
class Visualizer():
"""This class includes several functions that can display/save images and print/save logging information.
It uses a Python library tensprboardX for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
"""
def __init__(self, opt):
"""Initialize the Visualizer class
Parameters:
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
Step 1: Cache the training/test options
Step 2: create a tensorboard writer
Step 3: create an HTML object for saveing HTML filters
Step 4: create a logging file to store training losses
"""
self.opt = opt # cache the option
self.use_html = opt.isTrain and not opt.no_html
self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, 'logs', opt.name))
self.win_size = opt.display_winsize
self.name = opt.name
self.saved = False
if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
self.img_dir = os.path.join(self.web_dir, 'images')
print('create web directory %s...' % self.web_dir)
util.mkdirs([self.web_dir, self.img_dir])
# create a logging file to store training losses
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
with open(self.log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ Training Loss (%s) ================\n' % now)
def reset(self):
"""Reset the self.saved status"""
self.saved = False
def display_current_results(self, visuals, total_iters, epoch, save_result):
"""Display current results on tensorboad; save current results to an HTML file.
Parameters:
visuals (OrderedDict) - - dictionary of images to display or save
total_iters (int) -- total iterations
epoch (int) - - the current epoch
save_result (bool) - - if save the current results to an HTML file
"""
for label, image in visuals.items():
self.writer.add_image(label, util.tensor2im(image), total_iters, dataformats='HWC')
if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved.
self.saved = True
# save images to the disk
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
util.save_image(image_numpy, img_path)
# update website
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=0)
for n in range(epoch, 0, -1):
webpage.add_header('epoch [%d]' % n)
ims, txts, links = [], [], []
for label, image_numpy in visuals.items():
image_numpy = util.tensor2im(image)
img_path = 'epoch%.3d_%s.png' % (n, label)
ims.append(img_path)
txts.append(label)
links.append(img_path)
webpage.add_images(ims, txts, links, width=self.win_size)
webpage.save()
def plot_current_losses(self, total_iters, losses):
# G_loss_collection = {}
# D_loss_collection = {}
# for name, value in losses.items():
# if 'G' in name or 'NCE' in name or 'idt' in name:
# G_loss_collection[name] = value
# else:
# D_loss_collection[name] = value
# self.writer.add_scalars('G_collec', G_loss_collection, total_iters)
# self.writer.add_scalars('D_collec', D_loss_collection, total_iters)
for name, value in losses.items():
self.writer.add_scalar(name, value, total_iters)
# losses: same format as |losses| of plot_current_losses
def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
"""print current losses on console; also save the losses to the disk
Parameters:
epoch (int) -- current epoch
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
t_comp (float) -- computational time per data point (normalized by batch_size)
t_data (float) -- data loading time per data point (normalized by batch_size)
"""
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data)
for k, v in losses.items():
message += '%s: %.3f ' % (k, v)
print(message) # print the message
with open(self.log_name, "a") as log_file:
log_file.write('%s\n' % message) # save the message
class MyVisualizer:
def __init__(self, opt):
"""Initialize the Visualizer class
Parameters:
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
Step 1: Cache the training/test options
Step 2: create a tensorboard writer
Step 3: create an HTML object for saveing HTML filters
Step 4: create a logging file to store training losses
"""
self.opt = opt # cache the optio
self.name = opt.name
self.img_dir = os.path.join(opt.checkpoints_dir, opt.name, 'results')
if opt.phase != 'test':
self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, opt.name, 'logs'))
# create a logging file to store training losses
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
with open(self.log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ Training Loss (%s) ================\n' % now)
def display_current_results(self, visuals, total_iters, epoch, dataset='train', save_results=False, count=0, name=None,
add_image=True):
"""Display current results on tensorboad; save current results to an HTML file.
Parameters:
visuals (OrderedDict) - - dictionary of images to display or save
total_iters (int) -- total iterations
epoch (int) - - the current epoch
dataset (str) - - 'train' or 'val' or 'test'
"""
# if (not add_image) and (not save_results): return
for label, image in visuals.items():
for i in range(image.shape[0]):
image_numpy = util.tensor2im(image[i])
if add_image:
self.writer.add_image(label + '%s_%02d'%(dataset, i + count),
image_numpy, total_iters, dataformats='HWC')
if save_results:
save_path = os.path.join(self.img_dir, dataset, 'epoch_%s_%06d'%(epoch, total_iters))
if not os.path.isdir(save_path):
os.makedirs(save_path)
if name is not None:
img_path = os.path.join(save_path, '%s.png' % name)
else:
img_path = os.path.join(save_path, '%s_%03d.png' % (label, i + count))
util.save_image(image_numpy, img_path)
def plot_current_losses(self, total_iters, losses, dataset='train'):
for name, value in losses.items():
self.writer.add_scalar(name + '/%s'%dataset, value, total_iters)
# losses: same format as |losses| of plot_current_losses
def print_current_losses(self, epoch, iters, losses, t_comp, t_data, dataset='train'):
"""print current losses on console; also save the losses to the disk
Parameters:
epoch (int) -- current epoch
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
t_comp (float) -- computational time per data point (normalized by batch_size)
t_data (float) -- data loading time per data point (normalized by batch_size)
"""
message = '(dataset: %s, epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (
dataset, epoch, iters, t_comp, t_data)
for k, v in losses.items():
message += '%s: %.3f ' % (k, v)
print(message) # print the message
with open(self.log_name, "a") as log_file:
log_file.write('%s\n' % message) # save the message
|