File size: 4,584 Bytes
585c7ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""This package includes all the modules related to data loading and preprocessing

 To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset.
 You need to implement four functions:
    -- <__init__>:                      initialize the class, first call BaseDataset.__init__(self, opt).
    -- <__len__>:                       return the size of dataset.
    -- <__getitem__>:                   get a data point from data loader.
    -- <modify_commandline_options>:    (optionally) add dataset-specific options and set default options.

Now you can use the dataset class by specifying flag '--dataset_mode dummy'.
See our template dataset class 'template_dataset.py' for more details.
"""
import numpy as np
import importlib
import torch.utils.data
from face3d.data.base_dataset import BaseDataset


def find_dataset_using_name(dataset_name):
    """Import the module "data/[dataset_name]_dataset.py".

    In the file, the class called DatasetNameDataset() will
    be instantiated. It has to be a subclass of BaseDataset,
    and it is case-insensitive.
    """
    dataset_filename = "data." + dataset_name + "_dataset"
    datasetlib = importlib.import_module(dataset_filename)

    dataset = None
    target_dataset_name = dataset_name.replace('_', '') + 'dataset'
    for name, cls in datasetlib.__dict__.items():
        if name.lower() == target_dataset_name.lower() \
           and issubclass(cls, BaseDataset):
            dataset = cls

    if dataset is None:
        raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name))

    return dataset


def get_option_setter(dataset_name):
    """Return the static method <modify_commandline_options> of the dataset class."""
    dataset_class = find_dataset_using_name(dataset_name)
    return dataset_class.modify_commandline_options


def create_dataset(opt, rank=0):
    """Create a dataset given the option.

    This function wraps the class CustomDatasetDataLoader.
        This is the main interface between this package and 'train.py'/'test.py'

    Example:
        >>> from data import create_dataset
        >>> dataset = create_dataset(opt)
    """
    data_loader = CustomDatasetDataLoader(opt, rank=rank)
    dataset = data_loader.load_data()
    return dataset

class CustomDatasetDataLoader():
    """Wrapper class of Dataset class that performs multi-threaded data loading"""

    def __init__(self, opt, rank=0):
        """Initialize this class

        Step 1: create a dataset instance given the name [dataset_mode]
        Step 2: create a multi-threaded data loader.
        """
        self.opt = opt
        dataset_class = find_dataset_using_name(opt.dataset_mode)
        self.dataset = dataset_class(opt)
        self.sampler = None
        print("rank %d %s dataset [%s] was created" % (rank, self.dataset.name, type(self.dataset).__name__))
        if opt.use_ddp and opt.isTrain:
            world_size = opt.world_size
            self.sampler = torch.utils.data.distributed.DistributedSampler(
                    self.dataset,
                    num_replicas=world_size,
                    rank=rank,
                    shuffle=not opt.serial_batches
                )
            self.dataloader = torch.utils.data.DataLoader(
                        self.dataset,
                        sampler=self.sampler,
                        num_workers=int(opt.num_threads / world_size), 
                        batch_size=int(opt.batch_size / world_size), 
                        drop_last=True)
        else:
            self.dataloader = torch.utils.data.DataLoader(
                self.dataset,
                batch_size=opt.batch_size,
                shuffle=(not opt.serial_batches) and opt.isTrain,
                num_workers=int(opt.num_threads),
                drop_last=True
            )

    def set_epoch(self, epoch):
        self.dataset.current_epoch = epoch
        if self.sampler is not None:
            self.sampler.set_epoch(epoch)

    def load_data(self):
        return self

    def __len__(self):
        """Return the number of data in the dataset"""
        return min(len(self.dataset), self.opt.max_dataset_size)

    def __iter__(self):
        """Return a batch of data"""
        for i, data in enumerate(self.dataloader):
            if i * self.opt.batch_size >= self.opt.max_dataset_size:
                break
            yield data