File size: 6,687 Bytes
585c7ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from torch import nn
import torch
import torch.nn.functional as F

from src.facerender.sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d
from src.facerender.modules.util import KPHourglass, make_coordinate_grid, AntiAliasInterpolation2d, ResBottleneck


class KPDetector(nn.Module):
    """
    Detecting canonical keypoints. Return keypoint position and jacobian near each keypoint.
    """

    def __init__(self, block_expansion, feature_channel, num_kp, image_channel, max_features, reshape_channel, reshape_depth,
                 num_blocks, temperature, estimate_jacobian=False, scale_factor=1, single_jacobian_map=False):
        super(KPDetector, self).__init__()

        self.predictor = KPHourglass(block_expansion, in_features=image_channel,
                                     max_features=max_features,  reshape_features=reshape_channel, reshape_depth=reshape_depth, num_blocks=num_blocks)

        # self.kp = nn.Conv3d(in_channels=self.predictor.out_filters, out_channels=num_kp, kernel_size=7, padding=3)
        self.kp = nn.Conv3d(in_channels=self.predictor.out_filters, out_channels=num_kp, kernel_size=3, padding=1)

        if estimate_jacobian:
            self.num_jacobian_maps = 1 if single_jacobian_map else num_kp
            # self.jacobian = nn.Conv3d(in_channels=self.predictor.out_filters, out_channels=9 * self.num_jacobian_maps, kernel_size=7, padding=3)
            self.jacobian = nn.Conv3d(in_channels=self.predictor.out_filters, out_channels=9 * self.num_jacobian_maps, kernel_size=3, padding=1)
            '''
            initial as:
            [[1 0 0]
             [0 1 0]
             [0 0 1]]
            '''
            self.jacobian.weight.data.zero_()
            self.jacobian.bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0, 0, 0, 1] * self.num_jacobian_maps, dtype=torch.float))
        else:
            self.jacobian = None

        self.temperature = temperature
        self.scale_factor = scale_factor
        if self.scale_factor != 1:
            self.down = AntiAliasInterpolation2d(image_channel, self.scale_factor)

    def gaussian2kp(self, heatmap):
        """
        Extract the mean from a heatmap
        """
        shape = heatmap.shape
        heatmap = heatmap.unsqueeze(-1)
        grid = make_coordinate_grid(shape[2:], heatmap.type()).unsqueeze_(0).unsqueeze_(0)
        value = (heatmap * grid).sum(dim=(2, 3, 4))
        kp = {'value': value}

        return kp

    def forward(self, x):
        if self.scale_factor != 1:
            x = self.down(x)

        feature_map = self.predictor(x)
        prediction = self.kp(feature_map)

        final_shape = prediction.shape
        heatmap = prediction.view(final_shape[0], final_shape[1], -1)
        heatmap = F.softmax(heatmap / self.temperature, dim=2)
        heatmap = heatmap.view(*final_shape)

        out = self.gaussian2kp(heatmap)

        if self.jacobian is not None:
            jacobian_map = self.jacobian(feature_map)
            jacobian_map = jacobian_map.reshape(final_shape[0], self.num_jacobian_maps, 9, final_shape[2],
                                                final_shape[3], final_shape[4])
            heatmap = heatmap.unsqueeze(2)

            jacobian = heatmap * jacobian_map
            jacobian = jacobian.view(final_shape[0], final_shape[1], 9, -1)
            jacobian = jacobian.sum(dim=-1)
            jacobian = jacobian.view(jacobian.shape[0], jacobian.shape[1], 3, 3)
            out['jacobian'] = jacobian

        return out


class HEEstimator(nn.Module):
    """
    Estimating head pose and expression.
    """

    def __init__(self, block_expansion, feature_channel, num_kp, image_channel, max_features, num_bins=66, estimate_jacobian=True):
        super(HEEstimator, self).__init__()

        self.conv1 = nn.Conv2d(in_channels=image_channel, out_channels=block_expansion, kernel_size=7, padding=3, stride=2)
        self.norm1 = BatchNorm2d(block_expansion, affine=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.conv2 = nn.Conv2d(in_channels=block_expansion, out_channels=256, kernel_size=1)
        self.norm2 = BatchNorm2d(256, affine=True)

        self.block1 = nn.Sequential()
        for i in range(3):
            self.block1.add_module('b1_'+ str(i), ResBottleneck(in_features=256, stride=1))

        self.conv3 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=1)
        self.norm3 = BatchNorm2d(512, affine=True)
        self.block2 = ResBottleneck(in_features=512, stride=2)

        self.block3 = nn.Sequential()
        for i in range(3):
            self.block3.add_module('b3_'+ str(i), ResBottleneck(in_features=512, stride=1))

        self.conv4 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=1)
        self.norm4 = BatchNorm2d(1024, affine=True)
        self.block4 = ResBottleneck(in_features=1024, stride=2)

        self.block5 = nn.Sequential()
        for i in range(5):
            self.block5.add_module('b5_'+ str(i), ResBottleneck(in_features=1024, stride=1))

        self.conv5 = nn.Conv2d(in_channels=1024, out_channels=2048, kernel_size=1)
        self.norm5 = BatchNorm2d(2048, affine=True)
        self.block6 = ResBottleneck(in_features=2048, stride=2)

        self.block7 = nn.Sequential()
        for i in range(2):
            self.block7.add_module('b7_'+ str(i), ResBottleneck(in_features=2048, stride=1))

        self.fc_roll = nn.Linear(2048, num_bins)
        self.fc_pitch = nn.Linear(2048, num_bins)
        self.fc_yaw = nn.Linear(2048, num_bins)

        self.fc_t = nn.Linear(2048, 3)

        self.fc_exp = nn.Linear(2048, 3*num_kp)

    def forward(self, x):
        out = self.conv1(x)
        out = self.norm1(out)
        out = F.relu(out)
        out = self.maxpool(out)

        out = self.conv2(out)
        out = self.norm2(out)
        out = F.relu(out)

        out = self.block1(out)

        out = self.conv3(out)
        out = self.norm3(out)
        out = F.relu(out)
        out = self.block2(out)

        out = self.block3(out)

        out = self.conv4(out)
        out = self.norm4(out)
        out = F.relu(out)
        out = self.block4(out)

        out = self.block5(out)

        out = self.conv5(out)
        out = self.norm5(out)
        out = F.relu(out)
        out = self.block6(out)

        out = self.block7(out)

        out = F.adaptive_avg_pool2d(out, 1)
        out = out.view(out.shape[0], -1)

        yaw = self.fc_roll(out)
        pitch = self.fc_pitch(out)
        roll = self.fc_yaw(out)
        t = self.fc_t(out)
        exp = self.fc_exp(out)

        return {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp}