File size: 9,450 Bytes
7dd8b48
 
 
43b8016
7dd8b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038521a
 
 
7dd8b48
 
038521a
40fabdd
7dd8b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e694c
7dd8b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ebaa1a
7dd8b48
 
 
 
 
 
28e694c
7dd8b48
 
 
 
 
 
 
 
 
 
 
 
 
28e694c
7dd8b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94241bb
bf5c22f
94241bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os, sys
import tempfile
import gradio as gr
from src.gradio_demo import SadTalker  
# from src.utils.text2speech import TTSTalker
from huggingface_hub import snapshot_download

def get_source_image(image):   
        return image

try:
    import webui  # in webui
    in_webui = True
except:
    in_webui = False


def toggle_audio_file(choice):
    if choice == False:
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True)
    
def ref_video_fn(path_of_ref_video):
    if path_of_ref_video is not None:
        return gr.update(value=True)
    else:
        return gr.update(value=False)
    
def download_model():
    REPO_ID = 'vinthony/SadTalker-V002rc'
    snapshot_download(repo_id=REPO_ID, local_dir='./checkpoints', local_dir_use_symlinks=True)

def lipsyncer_demo():
    download_model()
    lip_syncer = SadTalker(lazy_load=True)
    # tts_talker = TTSTalker()

    with gr.Blocks(analytics_enabled=False) as lipsyncer_interface:
        gr.Markdown("<div align='center'> <h2> LipSyncer: Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation (CVPR 2023) </span> </h2> \
                    <a style='font-size:18px;color: #efefef' href='https://arxiv.org/abs/2211.12194'>Arxiv</a> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </div>")
        
        
        gr.Markdown("""
        <b></b>
        """)
        
        with gr.Row().style(equal_height=False):
            with gr.Column(variant='panel'):
                with gr.Tabs(elem_id="lipsyncer_source_image"):
                    with gr.TabItem('Source image'):
                        with gr.Row():
                            source_image = gr.Image(label="Source image", source="upload", type="filepath", elem_id="img2img_image").style(width=512)


                with gr.Tabs(elem_id="lipsyncer_driven_audio"):
                    with gr.TabItem('Driving Methods'):
                        gr.Markdown("Possible driving combinations: <br> 1. Audio only 2. Audio/IDLE Mode + Ref Video(pose, blink, pose+blink) 3. IDLE Mode only 4. Ref Video only (all) ")

                        with gr.Row():
                            driven_audio = gr.Audio(label="Input audio", source="upload", type="filepath")
                            driven_audio_no = gr.Audio(label="Use IDLE mode, no audio is required", source="upload", type="filepath", visible=False)

                            with gr.Column():
                                use_idle_mode = gr.Checkbox(label="Use Idle Animation")
                                length_of_audio = gr.Number(value=5, label="The length(seconds) of the generated video.")
                                use_idle_mode.change(toggle_audio_file, inputs=use_idle_mode, outputs=[driven_audio, driven_audio_no]) # todo

                        with gr.Row():
                            ref_video = gr.Video(label="Reference Video", source="upload", type="filepath", elem_id="vidref").style(width=512)

                            with gr.Column():
                                use_ref_video = gr.Checkbox(label="Use Reference Video")
                                ref_info = gr.Radio(['pose', 'blink','pose+blink', 'all'], value='pose', label='Reference Video',info="How to borrow from reference Video?((fully transfer, aka, video driving mode))")

                            ref_video.change(ref_video_fn, inputs=ref_video, outputs=[use_ref_video]) # todo


            with gr.Column(variant='panel'): 
                with gr.Tabs(elem_id="lipsyncer_checkbox"):
                    with gr.TabItem('Settings'):
                        gr.Markdown("")
                        with gr.Column(variant='panel'):
                            # width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
                            # height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
                            with gr.Row():
                                pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0) #
                                exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1) # 
                                blink_every = gr.Checkbox(label="use eye blink", value=True)

                            with gr.Row():
                                size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model?") # 
                                preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?")
                            
                            with gr.Row():
                                is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)")
                                facerender = gr.Radio(['facevid2vid','pirender'], value='facevid2vid', label='facerender', info="which face render?")
                                
                            with gr.Row():
                                batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=1)
                                enhancer = gr.Checkbox(label="GFPGAN as Face enhancer")
                            
                            submit = gr.Button('Generate', elem_id="lipsyncer_generate", variant='primary')
                            
                with gr.Tabs(elem_id="lipsyncer_genearted"):
                        gen_video = gr.Video(label="Generated video", format="mp4").style(width=256)

        

        submit.click(
                fn=lip_syncer.test,
                inputs=[source_image,
                        driven_audio,
                        preprocess_type,
                        is_still_mode,
                        enhancer,
                        batch_size,                            
                        size_of_image,
                        pose_style,
                        facerender,
                        exp_weight,
                        use_ref_video,
                        ref_video,
                        ref_info,
                        use_idle_mode,
                        length_of_audio,
                        blink_every
                        ], 
                outputs=[gen_video]
                )

        with gr.Row():
            examples = [
                [
                    'examples/source_image/full_body_1.png',
                    'examples/driven_audio/bus.wav',
                    'crop',
                    True,
                    False
                ],
                [
                    'examples/source_image/full_body_2.webp',
                    'examples/driven_audio/japanese.wav',
                    'crop',
                    False,
                    False
                ],
                [
                    'examples/source_image/full3.png',
                    'examples/driven_audio/deyu.wav',
                    'crop',
                    False,
                    True
                ],
                [
                    'examples/source_image/full4.jpeg',
                    'examples/driven_audio/eluosi.wav',
                    'full',
                    False,
                    True
                ],
                [
                    'examples/source_image/art_6.png',
                    'examples/driven_audio/imagine.wav',
                    'full',
                    True,
                    True
                ],
                [
                    'examples/source_image/art_8.png',
                    'examples/driven_audio/bus.wav',
                    'full',
                    True,
                    False
                ],
                [
                    'examples/source_image/art_13.png',
                    'examples/driven_audio/fayu.wav',
                    'resize',
                    True,
                    False
                ],
                [
                    'examples/source_image/art_9.png',
                    'examples/driven_audio/news.wav',
                    'resize',
                    False,
                    False
                ],
                [
                    'examples/source_image/art_5.png',
                    'examples/driven_audio/RD_Radio31_000.wav',
                    'resize',
                    True,
                    True
                ],
            ]
            gr.Examples(examples=examples,
                        inputs=[
                            source_image,
                            driven_audio,
                            preprocess_type,
                            is_still_mode,
                            enhancer], 
                        outputs=[gen_video],
                        fn=lip_syncer.test,
                        cache_examples=os.getenv('SYSTEM') == 'spaces') # 

    return lipsyncer_interface

if __name__ == "__main__":
    demo = lipsyncer_demo()
    #demo.queue(max_size=10)
    #demo.queue(concurrency_count=10, max_size=20)
    demo.launch(enable_queue=True, share=True, server_name="0.0.0.0", server_port=7860, debug=True)
    #demo.launch(debug=True)