import streamlit as st from variables import * from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import pipeline, AutoTokenizer from optimum.pipelines import pipeline import tweepy import pandas as pd import numpy as np import plotly_express as px import plotly.graph_objects as go from datetime import datetime as dt from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode from datasets import Dataset from huggingface_hub import Repository st.set_page_config( page_title="Live FinTwitter Analysis", page_icon="📈", layout="wide", ) st.sidebar.header("Sentiment Analysis Score") extract_time = dt.strftime(dt.today(),"%d_%B_%y_%H_%M") DATASET_REPO_URL = "https://huggingface.co/datasets/nickmuchi/fin_tweets" DATA_FILENAME = "tweets_data.csv" DATA_FILE = os.path.join("data", DATA_FILENAME) tweet_file = os.path.join("tweets", DATA_FILE) repo = Repository( local_dir="tweets", clone_from=DATASET_REPO_URL ) sentiment_classifier, topic_classifier = load_models() st.title('Live FinTwitter Sentiment & Topic Analysis with Tweepy and Transformers') st.markdown( """ This app uses Tweepy to extract tweets from twitter based on a list of popular accounts that tweet about markets/finance: - The stream of tweets is processed via HuggingFace models for finance tweet sentiment and topic analysis: - [Topic Classification](https://huggingface.co/nickmuchi/finbert-tone-finetuned-finance-topic-classification) - [Sentiment Analysis](https://huggingface.co/nickmuchi/finbert-tone-finetuned-fintwitter-classification) - The resulting sentiments and corresponding tweets are displayed, with graphs tracking the live sentiment and topics of financial market tweets in the Visualisation tab. """ ) refresh_stream = st.button('Refresh Stream') if "update_but" not in st.session_state: st.session_state.update_but = False if refresh_stream or st.session_state.update_but: st.session_state.update_but = True client = tweepy.Client(CONFIG['bearer_token'], wait_on_rate_limit=True) users = [] all_tweets = [] for res in tweepy.Paginator(client.get_list_tweets, id="1083517925049266176", user_fields=['username'], tweet_fields=['created_at','text'], expansions=['author_id'], max_results=100): all_tweets.append(res) with st.spinner('Generating sentiment and topic classification of tweets...'): tweets = [response.data for response in all_tweets] users = [response.includes['users'] for response in all_tweets] flat_users = [x for i in users for x in i] flat_tweets = [x for i in tweets for x in i] data = [(tweet.data['author_id'],tweet.data['text'],tweet.data['created_at']) for tweet in flat_tweets] df = pd.DataFrame(data,columns=['author','tweet','creation_time']) df['tweet'] = df['tweet'].replace(r'https?://\S+', '', regex=True).replace(r'www\S+', '', regex=True) users = client.get_users(ids=df['author'].unique().tolist()) df_users = pd.DataFrame(data=list(set([(user.id,user.username) for user in users.data])),columns=['author','username']) df_tweets = process_tweets(df,df_users) #appending the new dataframe to csv df_tweets.to_csv(tweet_file, mode='a', header=False, index=False) # Get all tweets tweet_list = df_tweets['tweet'].tolist() st.session_state['tlist'] = df_tweets st.session_state['tdf'] = df_tweets with st.container(): st.write("Table of Influential FinTweets") gb = GridOptionsBuilder.from_dataframe(df_tweets) gb.configure_pagination(paginationPageSize=30,paginationAutoPageSize=False) #Add pagination gb.configure_side_bar() #Add a sidebar gb.configure_selection('multiple', use_checkbox=True, groupSelectsChildren="Group checkbox select children") gb.configure_column('tweet',wrapText=True,autoHeight=True)#Enable multi-row selection gridOptions = gb.build() AgGrid( df_tweets, gridOptions=gridOptions, data_return_mode='AS_INPUT', update_mode='MODEL_CHANGED', fit_columns_on_grid_load=False, enable_enterprise_modules=True, theme='streamlit', #Add theme color to the table height=550, width='100%' ) ## Display sentiment score pos_perc = df_tweets[df_tweets['sentiment']=='Bullish'].count()[0]*100/df_tweets.shape[0] neg_perc = df_tweets[df_tweets['sentiment']=='Bearish'].count()[0]*100/df_tweets.shape[0] neu_perc = df_tweets[df_tweets['sentiment']=='Neutral'].count()[0]*100/df_tweets.shape[0] sentiment_score = neu_perc+pos_perc-neg_perc fig_1 = go.Figure() fig_1.add_trace(go.Indicator( mode = "delta", value = sentiment_score, domain = {'row': 1, 'column': 1})) fig_1.update_layout( template = {'data' : {'indicator': [{ 'title': {'text': "Sentiment Score"}, 'mode' : "number+delta+gauge", 'delta' : {'reference': 50}}] }}, autosize=False, width=250, height=250, margin=dict( l=5, r=5, b=5, pad=2 ) ) with st.sidebar: st.plotly_chart(fig_1) st.markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-fintweet-sentiment-analysis)")