Update app.py
Browse files
app.py
CHANGED
@@ -1,252 +1,252 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[1]:
|
5 |
-
|
6 |
-
|
7 |
-
import validators, re
|
8 |
-
from fake_useragent import UserAgent
|
9 |
-
from bs4 import BeautifulSoup
|
10 |
-
import streamlit as st
|
11 |
-
from transformers import pipeline
|
12 |
-
import time
|
13 |
-
import base64
|
14 |
-
import requests
|
15 |
-
import docx2txt
|
16 |
-
from io import StringIO
|
17 |
-
from PyPDF2 import PdfFileReader
|
18 |
-
import warnings
|
19 |
-
warnings.filterwarnings("ignore")
|
20 |
-
|
21 |
-
|
22 |
-
# In[2]:
|
23 |
-
|
24 |
-
time_str = time.strftime("%d%m%Y-%H%M%S")
|
25 |
-
#Functions
|
26 |
-
|
27 |
-
def article_text_extractor(url: str):
|
28 |
-
|
29 |
-
'''Extract text from url and divide text into chunks if length of text is more than 500 words'''
|
30 |
-
|
31 |
-
ua = UserAgent()
|
32 |
-
|
33 |
-
headers = {'User-Agent':str(ua.chrome)}
|
34 |
-
|
35 |
-
r = requests.get(url,headers=headers)
|
36 |
-
|
37 |
-
soup = BeautifulSoup(r.text, "html.parser")
|
38 |
-
title_text = soup.find_all(["h1"])
|
39 |
-
para_text = soup.find_all(["p"])
|
40 |
-
article_text = [result.text for result in para_text]
|
41 |
-
article_header = [result.text for result in title_text][0]
|
42 |
-
article = " ".join(article_text)
|
43 |
-
article = article.replace(".", ".<eos>")
|
44 |
-
article = article.replace("!", "!<eos>")
|
45 |
-
article = article.replace("?", "?<eos>")
|
46 |
-
sentences = article.split("<eos>")
|
47 |
-
|
48 |
-
current_chunk = 0
|
49 |
-
chunks = []
|
50 |
-
|
51 |
-
for sentence in sentences:
|
52 |
-
if len(chunks) == current_chunk + 1:
|
53 |
-
if len(chunks[current_chunk]) + len(sentence.split(" ")) <=
|
54 |
-
chunks[current_chunk].extend(sentence.split(" "))
|
55 |
-
else:
|
56 |
-
current_chunk += 1
|
57 |
-
chunks.append(sentence.split(" "))
|
58 |
-
else:
|
59 |
-
print(current_chunk)
|
60 |
-
chunks.append(sentence.split(" "))
|
61 |
-
|
62 |
-
for chunk_id in range(len(chunks)):
|
63 |
-
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
64 |
-
|
65 |
-
return article_header, chunks
|
66 |
-
|
67 |
-
def preprocess_plain_text(x):
|
68 |
-
|
69 |
-
x = x.encode("ascii", "ignore").decode() # unicode
|
70 |
-
x = re.sub(r"https*\S+", " ", x) # url
|
71 |
-
x = re.sub(r"@\S+", " ", x) # mentions
|
72 |
-
x = re.sub(r"#\S+", " ", x) # hastags
|
73 |
-
x = re.sub(r"\s{2,}", " ", x) # over spaces
|
74 |
-
x = re.sub("[^.,!?A-Za-z0-9]+", " ", x) # special charachters except .,!?
|
75 |
-
|
76 |
-
return x
|
77 |
-
|
78 |
-
def extract_pdf(file):
|
79 |
-
|
80 |
-
'''Extract text from PDF file'''
|
81 |
-
|
82 |
-
pdfReader = PdfFileReader(file)
|
83 |
-
count = pdfReader.numPages
|
84 |
-
all_text = ""
|
85 |
-
for i in range(count):
|
86 |
-
page = pdfReader.getPage(i)
|
87 |
-
all_text += page.extractText()
|
88 |
-
|
89 |
-
return all_text
|
90 |
-
|
91 |
-
|
92 |
-
def extract_text_from_file(file):
|
93 |
-
|
94 |
-
'''Extract text from uploaded file'''
|
95 |
-
|
96 |
-
# read text file
|
97 |
-
if file.type == "text/plain":
|
98 |
-
# To convert to a string based IO:
|
99 |
-
stringio = StringIO(file.getvalue().decode("utf-8"))
|
100 |
-
|
101 |
-
# To read file as string:
|
102 |
-
file_text = stringio.read()
|
103 |
-
|
104 |
-
# read pdf file
|
105 |
-
elif file.type == "application/pdf":
|
106 |
-
file_text = extract_pdf(file)
|
107 |
-
|
108 |
-
# read docx file
|
109 |
-
elif (
|
110 |
-
file.type
|
111 |
-
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
112 |
-
):
|
113 |
-
file_text = docx2txt.process(file)
|
114 |
-
|
115 |
-
return file_text
|
116 |
-
|
117 |
-
def summary_downloader(raw_text):
|
118 |
-
|
119 |
-
b64 = base64.b64encode(raw_text.encode()).decode()
|
120 |
-
new_filename = "new_text_file_{}_.txt".format(time_str)
|
121 |
-
st.markdown("#### Download Summary as a File ###")
|
122 |
-
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
|
123 |
-
st.markdown(href,unsafe_allow_html=True)
|
124 |
-
|
125 |
-
@st.cache(allow_output_mutation=True)
|
126 |
-
def facebook_model():
|
127 |
-
|
128 |
-
summarizer = pipeline('summarization',model='facebook/bart-large-cnn')
|
129 |
-
return summarizer
|
130 |
-
|
131 |
-
@st.cache(allow_output_mutation=True)
|
132 |
-
def schleifer_model():
|
133 |
-
|
134 |
-
summarizer = pipeline('summarization',model='sshleifer/distilbart-cnn-12-6')
|
135 |
-
return summarizer
|
136 |
-
|
137 |
-
#Streamlit App
|
138 |
-
|
139 |
-
st.title("Article Text and Link Extractive Summarizer 📝")
|
140 |
-
|
141 |
-
model_type = st.sidebar.selectbox(
|
142 |
-
"Model type", options=["Facebook-Bart", "Sshleifer-DistilBart"]
|
143 |
-
)
|
144 |
-
|
145 |
-
st.markdown(
|
146 |
-
"Model Source: [Facebook-Bart-large-CNN](https://huggingface.co/facebook/bart-large-cnn) and [Sshleifer-distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6)"
|
147 |
-
)
|
148 |
-
|
149 |
-
st.markdown(
|
150 |
-
"""The app supports extractive summarization which aims to identify the salient information that is then extracted and grouped together to form a concise summary.
|
151 |
-
For documents or text that is more than 500 words long, the app will divide the text into chunks and summarize each chunk.
|
152 |
-
There are two models available to choose from:""")
|
153 |
-
|
154 |
-
st.markdown("""
|
155 |
-
- Facebook-Bart, trained on large [CNN and Daily Mail](https://huggingface.co/datasets/cnn_dailymail) news articles.
|
156 |
-
- Sshleifer-Distilbart, which is a distilled (smaller) version of the large Bart model."""
|
157 |
-
)
|
158 |
-
|
159 |
-
st.markdown("""Please do note that the model will take longer to generate summaries for documents that are too long.""")
|
160 |
-
|
161 |
-
st.markdown(
|
162 |
-
"The app only ingests the below formats for summarization task:"
|
163 |
-
)
|
164 |
-
st.markdown(
|
165 |
-
"""- Raw text entered in text box.
|
166 |
-
- URL of an article to be summarized.
|
167 |
-
- Documents with .txt, .pdf or .docx file formats."""
|
168 |
-
)
|
169 |
-
|
170 |
-
st.markdown("---")
|
171 |
-
|
172 |
-
url_text = st.text_input("Please Enter a url here")
|
173 |
-
|
174 |
-
|
175 |
-
st.markdown(
|
176 |
-
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
177 |
-
unsafe_allow_html=True,
|
178 |
-
)
|
179 |
-
|
180 |
-
plain_text = st.text_input("Please Paste/Enter plain text here")
|
181 |
-
|
182 |
-
st.markdown(
|
183 |
-
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
184 |
-
unsafe_allow_html=True,
|
185 |
-
)
|
186 |
-
|
187 |
-
upload_doc = st.file_uploader(
|
188 |
-
"Upload a .txt, .pdf, .docx file for summarization"
|
189 |
-
)
|
190 |
-
|
191 |
-
is_url = validators.url(url_text)
|
192 |
-
|
193 |
-
if is_url:
|
194 |
-
# complete text, chunks to summarize (list of sentences for long docs)
|
195 |
-
article_title,chunks = article_text_extractor(url=url_text)
|
196 |
-
|
197 |
-
elif upload_doc:
|
198 |
-
|
199 |
-
clean_text = preprocess_plain_text(extract_text_from_file(upload_doc))
|
200 |
-
|
201 |
-
else:
|
202 |
-
|
203 |
-
clean_text = preprocess_plain_text(plain_text)
|
204 |
-
|
205 |
-
summarize = st.button("Summarize")
|
206 |
-
|
207 |
-
# called on toggle button [summarize]
|
208 |
-
if summarize:
|
209 |
-
if model_type == "Facebook-Bart":
|
210 |
-
if is_url:
|
211 |
-
text_to_summarize = chunks
|
212 |
-
else:
|
213 |
-
text_to_summarize = clean_text
|
214 |
-
|
215 |
-
with st.spinner(
|
216 |
-
text="Loading Facebook-Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
|
217 |
-
):
|
218 |
-
summarizer_model = facebook_model()
|
219 |
-
summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
|
220 |
-
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
221 |
-
|
222 |
-
elif model_type == "Sshleifer-DistilBart":
|
223 |
-
if is_url:
|
224 |
-
text_to_summarize = chunks
|
225 |
-
else:
|
226 |
-
text_to_summarize = clean_text
|
227 |
-
|
228 |
-
with st.spinner(
|
229 |
-
text="Loading Sshleifer-DistilBart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
|
230 |
-
):
|
231 |
-
summarizer_model = schleifer_model()
|
232 |
-
summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
|
233 |
-
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
234 |
-
|
235 |
-
# final summarized output
|
236 |
-
st.subheader("Summarized text")
|
237 |
-
|
238 |
-
if is_url:
|
239 |
-
|
240 |
-
# view summarized text (expander)
|
241 |
-
st.markdown(f"Article title: {article_title}")
|
242 |
-
|
243 |
-
st.write(summarized_text)
|
244 |
-
|
245 |
-
summary_downloader(summarized_text)
|
246 |
-
|
247 |
-
|
248 |
-
# In[ ]:
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
import validators, re
|
8 |
+
from fake_useragent import UserAgent
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
import streamlit as st
|
11 |
+
from transformers import pipeline
|
12 |
+
import time
|
13 |
+
import base64
|
14 |
+
import requests
|
15 |
+
import docx2txt
|
16 |
+
from io import StringIO
|
17 |
+
from PyPDF2 import PdfFileReader
|
18 |
+
import warnings
|
19 |
+
warnings.filterwarnings("ignore")
|
20 |
+
|
21 |
+
|
22 |
+
# In[2]:
|
23 |
+
|
24 |
+
time_str = time.strftime("%d%m%Y-%H%M%S")
|
25 |
+
#Functions
|
26 |
+
|
27 |
+
def article_text_extractor(url: str):
|
28 |
+
|
29 |
+
'''Extract text from url and divide text into chunks if length of text is more than 500 words'''
|
30 |
+
|
31 |
+
ua = UserAgent()
|
32 |
+
|
33 |
+
headers = {'User-Agent':str(ua.chrome)}
|
34 |
+
|
35 |
+
r = requests.get(url,headers=headers)
|
36 |
+
|
37 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
38 |
+
title_text = soup.find_all(["h1"])
|
39 |
+
para_text = soup.find_all(["p"])
|
40 |
+
article_text = [result.text for result in para_text]
|
41 |
+
article_header = [result.text for result in title_text][0]
|
42 |
+
article = " ".join(article_text)
|
43 |
+
article = article.replace(".", ".<eos>")
|
44 |
+
article = article.replace("!", "!<eos>")
|
45 |
+
article = article.replace("?", "?<eos>")
|
46 |
+
sentences = article.split("<eos>")
|
47 |
+
|
48 |
+
current_chunk = 0
|
49 |
+
chunks = []
|
50 |
+
|
51 |
+
for sentence in sentences:
|
52 |
+
if len(chunks) == current_chunk + 1:
|
53 |
+
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
|
54 |
+
chunks[current_chunk].extend(sentence.split(" "))
|
55 |
+
else:
|
56 |
+
current_chunk += 1
|
57 |
+
chunks.append(sentence.split(" "))
|
58 |
+
else:
|
59 |
+
print(current_chunk)
|
60 |
+
chunks.append(sentence.split(" "))
|
61 |
+
|
62 |
+
for chunk_id in range(len(chunks)):
|
63 |
+
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
64 |
+
|
65 |
+
return article_header, chunks
|
66 |
+
|
67 |
+
def preprocess_plain_text(x):
|
68 |
+
|
69 |
+
x = x.encode("ascii", "ignore").decode() # unicode
|
70 |
+
x = re.sub(r"https*\S+", " ", x) # url
|
71 |
+
x = re.sub(r"@\S+", " ", x) # mentions
|
72 |
+
x = re.sub(r"#\S+", " ", x) # hastags
|
73 |
+
x = re.sub(r"\s{2,}", " ", x) # over spaces
|
74 |
+
x = re.sub("[^.,!?A-Za-z0-9]+", " ", x) # special charachters except .,!?
|
75 |
+
|
76 |
+
return x
|
77 |
+
|
78 |
+
def extract_pdf(file):
|
79 |
+
|
80 |
+
'''Extract text from PDF file'''
|
81 |
+
|
82 |
+
pdfReader = PdfFileReader(file)
|
83 |
+
count = pdfReader.numPages
|
84 |
+
all_text = ""
|
85 |
+
for i in range(count):
|
86 |
+
page = pdfReader.getPage(i)
|
87 |
+
all_text += page.extractText()
|
88 |
+
|
89 |
+
return all_text
|
90 |
+
|
91 |
+
|
92 |
+
def extract_text_from_file(file):
|
93 |
+
|
94 |
+
'''Extract text from uploaded file'''
|
95 |
+
|
96 |
+
# read text file
|
97 |
+
if file.type == "text/plain":
|
98 |
+
# To convert to a string based IO:
|
99 |
+
stringio = StringIO(file.getvalue().decode("utf-8"))
|
100 |
+
|
101 |
+
# To read file as string:
|
102 |
+
file_text = stringio.read()
|
103 |
+
|
104 |
+
# read pdf file
|
105 |
+
elif file.type == "application/pdf":
|
106 |
+
file_text = extract_pdf(file)
|
107 |
+
|
108 |
+
# read docx file
|
109 |
+
elif (
|
110 |
+
file.type
|
111 |
+
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
112 |
+
):
|
113 |
+
file_text = docx2txt.process(file)
|
114 |
+
|
115 |
+
return file_text
|
116 |
+
|
117 |
+
def summary_downloader(raw_text):
|
118 |
+
|
119 |
+
b64 = base64.b64encode(raw_text.encode()).decode()
|
120 |
+
new_filename = "new_text_file_{}_.txt".format(time_str)
|
121 |
+
st.markdown("#### Download Summary as a File ###")
|
122 |
+
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
|
123 |
+
st.markdown(href,unsafe_allow_html=True)
|
124 |
+
|
125 |
+
@st.cache(allow_output_mutation=True)
|
126 |
+
def facebook_model():
|
127 |
+
|
128 |
+
summarizer = pipeline('summarization',model='facebook/bart-large-cnn')
|
129 |
+
return summarizer
|
130 |
+
|
131 |
+
@st.cache(allow_output_mutation=True)
|
132 |
+
def schleifer_model():
|
133 |
+
|
134 |
+
summarizer = pipeline('summarization',model='sshleifer/distilbart-cnn-12-6')
|
135 |
+
return summarizer
|
136 |
+
|
137 |
+
#Streamlit App
|
138 |
+
|
139 |
+
st.title("Article Text and Link Extractive Summarizer 📝")
|
140 |
+
|
141 |
+
model_type = st.sidebar.selectbox(
|
142 |
+
"Model type", options=["Facebook-Bart", "Sshleifer-DistilBart"]
|
143 |
+
)
|
144 |
+
|
145 |
+
st.markdown(
|
146 |
+
"Model Source: [Facebook-Bart-large-CNN](https://huggingface.co/facebook/bart-large-cnn) and [Sshleifer-distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6)"
|
147 |
+
)
|
148 |
+
|
149 |
+
st.markdown(
|
150 |
+
"""The app supports extractive summarization which aims to identify the salient information that is then extracted and grouped together to form a concise summary.
|
151 |
+
For documents or text that is more than 500 words long, the app will divide the text into chunks and summarize each chunk.
|
152 |
+
There are two models available to choose from:""")
|
153 |
+
|
154 |
+
st.markdown("""
|
155 |
+
- Facebook-Bart, trained on large [CNN and Daily Mail](https://huggingface.co/datasets/cnn_dailymail) news articles.
|
156 |
+
- Sshleifer-Distilbart, which is a distilled (smaller) version of the large Bart model."""
|
157 |
+
)
|
158 |
+
|
159 |
+
st.markdown("""Please do note that the model will take longer to generate summaries for documents that are too long.""")
|
160 |
+
|
161 |
+
st.markdown(
|
162 |
+
"The app only ingests the below formats for summarization task:"
|
163 |
+
)
|
164 |
+
st.markdown(
|
165 |
+
"""- Raw text entered in text box.
|
166 |
+
- URL of an article to be summarized.
|
167 |
+
- Documents with .txt, .pdf or .docx file formats."""
|
168 |
+
)
|
169 |
+
|
170 |
+
st.markdown("---")
|
171 |
+
|
172 |
+
url_text = st.text_input("Please Enter a url here")
|
173 |
+
|
174 |
+
|
175 |
+
st.markdown(
|
176 |
+
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
177 |
+
unsafe_allow_html=True,
|
178 |
+
)
|
179 |
+
|
180 |
+
plain_text = st.text_input("Please Paste/Enter plain text here")
|
181 |
+
|
182 |
+
st.markdown(
|
183 |
+
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
184 |
+
unsafe_allow_html=True,
|
185 |
+
)
|
186 |
+
|
187 |
+
upload_doc = st.file_uploader(
|
188 |
+
"Upload a .txt, .pdf, .docx file for summarization"
|
189 |
+
)
|
190 |
+
|
191 |
+
is_url = validators.url(url_text)
|
192 |
+
|
193 |
+
if is_url:
|
194 |
+
# complete text, chunks to summarize (list of sentences for long docs)
|
195 |
+
article_title,chunks = article_text_extractor(url=url_text)
|
196 |
+
|
197 |
+
elif upload_doc:
|
198 |
+
|
199 |
+
clean_text = preprocess_plain_text(extract_text_from_file(upload_doc))
|
200 |
+
|
201 |
+
else:
|
202 |
+
|
203 |
+
clean_text = preprocess_plain_text(plain_text)
|
204 |
+
|
205 |
+
summarize = st.button("Summarize")
|
206 |
+
|
207 |
+
# called on toggle button [summarize]
|
208 |
+
if summarize:
|
209 |
+
if model_type == "Facebook-Bart":
|
210 |
+
if is_url:
|
211 |
+
text_to_summarize = chunks
|
212 |
+
else:
|
213 |
+
text_to_summarize = clean_text
|
214 |
+
|
215 |
+
with st.spinner(
|
216 |
+
text="Loading Facebook-Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
|
217 |
+
):
|
218 |
+
summarizer_model = facebook_model()
|
219 |
+
summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
|
220 |
+
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
221 |
+
|
222 |
+
elif model_type == "Sshleifer-DistilBart":
|
223 |
+
if is_url:
|
224 |
+
text_to_summarize = chunks
|
225 |
+
else:
|
226 |
+
text_to_summarize = clean_text
|
227 |
+
|
228 |
+
with st.spinner(
|
229 |
+
text="Loading Sshleifer-DistilBart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
|
230 |
+
):
|
231 |
+
summarizer_model = schleifer_model()
|
232 |
+
summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
|
233 |
+
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
234 |
+
|
235 |
+
# final summarized output
|
236 |
+
st.subheader("Summarized text")
|
237 |
+
|
238 |
+
if is_url:
|
239 |
+
|
240 |
+
# view summarized text (expander)
|
241 |
+
st.markdown(f"Article title: {article_title}")
|
242 |
+
|
243 |
+
st.write(summarized_text)
|
244 |
+
|
245 |
+
summary_downloader(summarized_text)
|
246 |
+
|
247 |
+
|
248 |
+
# In[ ]:
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|