from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-Instruct-PT-124M', use_auth_token="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") model = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-Instruct-PT-124M', use_auth_token="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") disclaimer = """**`AVISO`:** Esta demonstração deve ser usada apenas para fins de pesquisa. O uso comercial é estritamente **proibido**. A saída do modelo não é censurada e os autores não endossam as opiniões no conteúdo gerado. **Use por sua própria conta e risco**.""" with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo: gr.Markdown("""

🔥Aira-PT Demo 🤓🚀

""") with gr.Row(scale=1, equal_height=True): with gr.Column(scale=5): chatbot = gr.Chatbot(label="Aira").style(height=300) with gr.Column(scale=2): with gr.Tab(label="Parâmetros ⚙️"): top_k = gr.Slider( minimum=10, maximum=100, value=50, step=5, interactive=True, label="Top-k",) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.70, step=0.05, interactive=True, label="Top-p",) temperature = gr.Slider( minimum=0.001, maximum=2.0, value=0.1, step=0.1, interactive=True, label="Temperatura",) max_length = gr.Slider( minimum=10, maximum=500, value=100, step=10, interactive=True, label="Comprimento Máximo",) msg = gr.Textbox(label="Faça uma pergunta para Aira", placeholder="Olá Aira, como vai você?") clear = gr.Button("Limpar Conversa 🧹") gr.Markdown(disclaimer) def generate_response(message, chat_history, top_k, top_p, temperature, max_length): inputs = tokenizer(tokenizer.bos_token + message + tokenizer.eos_token, return_tensors="pt") response = model.generate(**inputs, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, do_sample=True, early_stopping=True, top_k=top_k, max_length=max_length, top_p=top_p, temperature=temperature, num_return_sequences=1) chat_history.append((f"👤 {message}", f"""🤖 {tokenizer.decode(response[0], skip_special_tokens=True).replace(message, "")}""")) return "", chat_history msg.submit(generate_response, [msg, chatbot, top_k, top_p, temperature, max_length], [msg, chatbot]) clear.click(lambda: None, None, chatbot, queue=False) demo.launch()