|
import time |
|
import torch |
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification |
|
|
|
model_id = "nicholasKluge/Aira-Instruct-PT-560M" |
|
rewardmodel_id = "nicholasKluge/RewardModelPT" |
|
toxicitymodel_id = "nicholasKluge/ToxicityModelPT" |
|
token = "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" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token) |
|
rewardModel = AutoModelForSequenceClassification.from_pretrained(rewardmodel_id, use_auth_token=token) |
|
toxicityModel = AutoModelForSequenceClassification.from_pretrained(toxicitymodel_id, use_auth_token=token) |
|
|
|
model.eval() |
|
rewardModel.eval() |
|
toxicityModel.eval() |
|
|
|
model.to(device) |
|
rewardModel.to(device) |
|
toxicityModel.to(device) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) |
|
rewardTokenizer = AutoTokenizer.from_pretrained(rewardmodel_id, use_auth_token=token) |
|
toxiciyTokenizer = AutoTokenizer.from_pretrained(toxicitymodel_id, use_auth_token=token) |
|
|
|
|
|
intro = """ |
|
## O que é `Aira`? |
|
|
|
[`Aira`](https://github.com/Nkluge-correa/Aira-EXPERT) é um `chatbot` projetado para simular a forma como um humano (especialista) se comportaria durante uma rodada de perguntas e respostas (Q&A). `Aira` tem muitas iterações, desde um chatbot de domínio fechado baseado em regras pré-definidas até um chatbot de domínio aberto atingido através do ajuste fino de grandes modelos de linguagem pré-treinados. `Aira` tem uma área de especialização que inclui tópicos relacionados com a ética da IA e a investigação sobre segurança da IA. |
|
|
|
Desenvolvemos os nossos chatbots de conversação de domínio aberto através da geração de texto condicional/ajuste fino por instruções. Esta abordagem tem muitas limitações. Apesar de podermos criar um chatbot capaz de responder a perguntas sobre qualquer assunto, é difícil forçar o modelo a produzir respostas de boa qualidade. E por boa, queremos dizer texto **factual** e **não tóxico**. Isto leva-nos a dois dos problemas mais comuns quando lidando com modelos generativos utilizados em aplicações de conversação: |
|
|
|
## Limitações |
|
|
|
🤥 Modelos generativos podem perpetuar a geração de conteúdo pseudo-informativo, ou seja, informações falsas que podem parecer verdadeiras. |
|
|
|
🤬 Em certos tipos de tarefas, modelos generativos podem produzir conteúdo prejudicial e discriminatório inspirado em estereótipos históricos. |
|
|
|
## Uso Intendido |
|
|
|
`Aira` destina-se apenas à investigação académica. Para mais informações, visite o nosso [HuggingFace models](https://huggingface.co/nicholasKluge) para ver como desenvolvemos `Aira`. |
|
|
|
## Como essa demo funciona? |
|
|
|
Esta demonstração utiliza um [`modelo de recompensa`](https://huggingface.co/nicholasKluge/RewardModel) e um [`modelo de toxicidade`](https://huggingface.co/nicholasKluge/ToxicityModel) para avaliar a pontuação de cada resposta candidata, considerando o seu alinhamento com a mensagem do utilizador e o seu nível de toxicidade. A função de geração organiza as respostas candidatas por ordem da sua pontuação de recompensa e elimina as respostas consideradas tóxicas ou nocivas. Posteriormente, a função de geração devolve a resposta candidata com a pontuação mais elevada que ultrapassa o limiar de segurança, ou uma mensagem pré-estabelecida se não forem identificados candidatos seguros. |
|
""" |
|
|
|
disclaimer = """ |
|
**Isenção de responsabilidade:** Esta demonstração deve ser utilizada apenas para fins de investigação. Os moderadores não censuram a saída do modelo, e os autores não endossam as opiniões geradas por este modelo. |
|
|
|
Se desejar apresentar uma reclamação sobre qualquer mensagem produzida por `Aira`, por favor contatar [[email protected]](mailto:[email protected]). |
|
""" |
|
|
|
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo: |
|
|
|
gr.Markdown("""<h1><center>Aira Demo (Portuguese) 🤓💬</h1></center>""") |
|
gr.Markdown(intro) |
|
|
|
chatbot = gr.Chatbot(label="Aira").style(height=500) |
|
msg = gr.Textbox(label="Write a question or comment to Aira ...", placeholder="Hi Aira, how are you?") |
|
|
|
with gr.Accordion(label="Parâmetros ⚙️", open=True): |
|
safety = gr.Radio(["On", "Off"], label="Proteção 🛡️", value="On", info="Ajuda a prevenir o modelo de gerar conteúdo tóxico.") |
|
top_k = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True, label="Top-k", info="Controla o número de tokens de maior probabilidade a considerar em cada passo.") |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.50, step=0.05, interactive=True, label="Top-p", info="Controla a probabilidade cumulativa dos tokens gerados.") |
|
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.1, step=0.1, interactive=True, label="Temperatura", info="Controla a aleatoriedade dos tokens gerados.") |
|
max_length = gr.Slider(minimum=10, maximum=500, value=100, step=10, interactive=True, label="Comprimento Máximo", info="Controla o comprimento máximo do texto gerado.") |
|
smaple_from = gr.Slider(minimum=2, maximum=10, value=2, step=1, interactive=True, label="Amostragem por Rejeição", info="Controla o número de gerações a partir das quais o modelo de recompensa irá selecionar.") |
|
|
|
clear = gr.Button("Limpar Conversa 🧹") |
|
gr.Markdown(disclaimer) |
|
|
|
def user(user_message, chat_history): |
|
return gr.update(value=user_message, interactive=True), chat_history + [["👤 " + user_message, None]] |
|
|
|
def generate_response(user_msg, top_p, temperature, top_k, max_length, smaple_from, safety, chat_history): |
|
|
|
inputs = tokenizer(tokenizer.bos_token + user_msg + tokenizer.eos_token, return_tensors="pt").to(model.device) |
|
|
|
generated_response = model.generate(**inputs, |
|
bos_token_id=tokenizer.bos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
repetition_penalty=1.8, |
|
do_sample=True, |
|
early_stopping=True, |
|
top_k=top_k, |
|
max_length=max_length, |
|
top_p=top_p, |
|
temperature=temperature, |
|
num_return_sequences=smaple_from) |
|
|
|
decoded_text = [tokenizer.decode(tokens, skip_special_tokens=True).replace(user_msg, "") for tokens in generated_response] |
|
|
|
rewards = list() |
|
toxicities = list() |
|
|
|
for text in decoded_text: |
|
reward_tokens = rewardTokenizer(user_msg, text, |
|
truncation=True, |
|
max_length=512, |
|
return_token_type_ids=False, |
|
return_tensors="pt", |
|
return_attention_mask=True) |
|
|
|
reward_tokens.to(rewardModel.device) |
|
|
|
reward = rewardModel(**reward_tokens)[0].item() |
|
|
|
toxicity_tokens = toxiciyTokenizer(user_msg + " " + text, |
|
truncation=True, |
|
max_length=512, |
|
return_token_type_ids=False, |
|
return_tensors="pt", |
|
return_attention_mask=True) |
|
|
|
toxicity_tokens.to(toxicityModel.device) |
|
|
|
toxicity = toxicityModel(**toxicity_tokens)[0].item() |
|
|
|
rewards.append(reward) |
|
toxicities.append(toxicity) |
|
|
|
toxicity_threshold = 5 |
|
|
|
ordered_generations = sorted(zip(decoded_text, rewards, toxicities), key=lambda x: x[1], reverse=True) |
|
|
|
if safety == "On": |
|
ordered_generations = [(x, y, z) for (x, y, z) in ordered_generations if z >= toxicity_threshold] |
|
|
|
if len(ordered_generations) == 0: |
|
bot_message = """Peço desculpa pelo incómodo, mas parece que não foi possível identificar respostas adequadas que cumpram as nossas normas de segurança. Infelizmente, isto indica que o conteúdo gerado pode conter elementos de toxicidade ou pode não ajudar a responder à sua mensagem. A sua opinião é valiosa para nós e esforçamo-nos por garantir uma conversa segura e construtiva. Não hesite em fornecer mais pormenores ou colocar quaisquer outras questões, e farei o meu melhor para o ajudar.""" |
|
|
|
else: |
|
bot_message = ordered_generations[0][0] |
|
|
|
chat_history[-1][1] = "🤖 " |
|
for character in bot_message: |
|
chat_history[-1][1] += character |
|
time.sleep(0.005) |
|
yield chat_history |
|
|
|
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
generate_response, [msg, top_p, temperature, top_k, max_length, smaple_from, safety, chatbot], chatbot |
|
) |
|
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False) |
|
msg.submit(lambda x: gr.update(value=''), None,[msg]) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
demo.queue() |
|
demo.launch() |