import streamlit as st import pandas as pd # Title and Description st.title('Operational Cash Flow Analysis') st.write(""" This application allows you to analyze and visualize your company's operational cash flow. """) # Data Input Section st.header('Input Financial Data') # Input fields for financial data net_income = st.number_input('Net Income', value=0) depreciation = st.number_input('Depreciation and Amortization', value=0) change_ar = st.number_input('Change in Accounts Receivable', value=0) change_inventory = st.number_input('Change in Inventory', value=0) change_ap = st.number_input('Change in Accounts Payable', value=0) # Calculating Operational Cash Flow ocf = net_income + depreciation - change_ar - change_inventory + change_ap # Displaying the result st.subheader('Calculated Operational Cash Flow') st.write(f'Operational Cash Flow: ${ocf}') # DataFrame for historical data visualization (example data) data = { 'Year': ['2020', '2021', '2022'], 'Net Income': [100000, 120000, 130000], 'Depreciation and Amortization': [20000, 25000, 27000], 'Change in AR': [-5000, -6000, -5500], 'Change in Inventory': [-8000, -7500, -9000], 'Change in AP': [7000, 8500, 9000], 'Operational Cash Flow': [114000, 137500, 149500] } df = pd.DataFrame(data) # Display the historical data table st.subheader('Historical Data') st.dataframe(df) # Visualize the historical operational cash flow st.subheader('Operational Cash Flow Over Years') st.line_chart(df[['Year', 'Operational Cash Flow']].set_index('Year')) # Scenario Analysis Section st.header('Scenario Analysis') # Interactive widgets for scenario analysis new_net_income = st.slider('New Net Income', min_value=0, max_value=200000, value=net_income) new_depreciation = st.slider('New Depreciation and Amortization', min_value=0, max_value=50000, value=depreciation) new_change_ar = st.slider('New Change in Accounts Receivable', min_value=-10000, max_value=10000, value=change_ar) new_change_inventory = st.slider('New Change in Inventory', min_value=-15000, max_value=15000, value=change_inventory) new_change_ap = st.slider('New Change in Accounts Payable', min_value=-10000, max_value=10000, value=change_ap) # Recalculate OCF based on new inputs new_ocf = new_net_income + new_depreciation - new_change_ar - new_change_inventory + new_change_ap # Display the new result st.subheader('Scenario Analysis Result') st.write(f'New Operational Cash Flow: ${new_ocf}') # Button to download data as CSV st.download_button( label="Download Data as CSV", data=df.to_csv().encode('utf-8'), file_name='operational_cash_flow.csv', mime='text/csv', )