Romain Graux
Initial commit with ml code and webapp
b2ffc9b
raw
history blame
628 Bytes
import os
import numpy as np
import pandas as pd
from PIL import Image
import matplotlib.pyplot as plt
from utils.paths import CROPS_VIS_PATH
df = pd.read_csv("dataset/atom_crops_replicate.csv")
for crop_name in df['Filename']:
crop_filename = os.path.join("data/atom_crops_data_sac_cnn", crop_name)
crop = Image.open(crop_filename)
crop_arr = np.array(crop).astype(np.float32)
plt.figure()
plt.axis('off')
plt.imshow(crop_arr)
vis_path = os.path.join(CROPS_VIS_PATH, '{}.png'.format(os.path.splitext(crop_name)[0]))
plt.savefig(vis_path, bbox_inches='tight', pad_inches=0.0)
plt.close()