Romain Graux
Initial commit with ml code and webapp
b2ffc9b
raw
history blame
12.6 kB
import numpy as np
import torch
import torch.nn as nn
from torch import tensor as tt
from typing import Optional, Tuple, Type
import pyro
import pyro.distributions as dist
import warnings
from atoms_detection.vae_image_utils import imcoordgrid, to_onehot, transform_coordinates
warnings.filterwarnings("ignore", module="torchvision.datasets")
# VAE model set-up
# @title Load neural networks for VAE { form-width: "25%" }
def set_deterministic_mode(seed: int) -> None:
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def make_fc_layers(in_dim: int,
hidden_dim: int = 128,
num_layers: int = 2,
activation: str = "tanh"
) -> Type[nn.Module]:
"""
Generates a module with stacked fully-connected (aka dense) layers
"""
activations = {"tanh": nn.Tanh, "lrelu": nn.LeakyReLU, "softplus": nn.Softplus}
fc_layers = []
for i in range(num_layers):
hidden_dim_ = in_dim if i == 0 else hidden_dim
fc_layers.extend(
[nn.Linear(hidden_dim_, hidden_dim), activations[activation]()])
fc_layers = nn.Sequential(*fc_layers)
return fc_layers
class fcEncoderNet(nn.Module):
"""
Simple fully-connected inference (encoder) network
"""
def __init__(self,
in_dim: Tuple[int,int],
latent_dim: int = 2,
hidden_dim: int = 128,
num_layers: int = 2,
activation: str = 'tanh',
softplus_out: bool = False
) -> None:
"""
Initializes module parameters
"""
super(fcEncoderNet, self).__init__()
if len(in_dim) not in [1, 2, 3]:
raise ValueError("in_dim must be (h, w), (h, w, c), or (h*w*c,)")
self.in_dim = torch.prod(tt(in_dim)).item()
self.fc_layers = make_fc_layers(
self.in_dim, hidden_dim, num_layers, activation)
self.fc11 = nn.Linear(hidden_dim, latent_dim)
self.fc12 = nn.Linear(hidden_dim, latent_dim)
self.activation_out = nn.Softplus() if softplus_out else lambda x: x
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]:
"""
Forward pass
"""
x = x.view(-1, self.in_dim)
x = self.fc_layers(x)
mu = self.fc11(x)
log_sigma = self.activation_out(self.fc12(x))
return mu, log_sigma
class fcDecoderNet(nn.Module):
"""
Standard decoder for VAE
"""
def __init__(self,
out_dim: Tuple[int],
latent_dim: int,
hidden_dim: int = 128,
num_layers: int = 2,
activation: str = 'tanh',
sigmoid_out: str = True,
) -> None:
super(fcDecoderNet, self).__init__()
if len(out_dim) not in [1, 2, 3]:
raise ValueError("in_dim must be (h, w), (h, w, c), or (h*w*c,)")
self.reshape = out_dim
out_dim = torch.prod(tt(out_dim)).item()
self.fc_layers = make_fc_layers(
latent_dim, hidden_dim, num_layers, activation)
self.out = nn.Linear(hidden_dim, out_dim)
self.activation_out = nn.Sigmoid() if sigmoid_out else lambda x: x
def forward(self, z: torch.Tensor) -> torch.Tensor:
x = self.fc_layers(z)
x = self.activation_out(self.out(x))
return x.view(-1, *self.reshape)
class rDecoderNet(nn.Module):
"""
Spatial generator (decoder) network with fully-connected layers
"""
def __init__(self,
out_dim: Tuple[int],
latent_dim: int,
hidden_dim: int = 128,
num_layers: int = 2,
activation: str = 'tanh',
sigmoid_out: str = True
) -> None:
"""
Initializes module parameters
"""
super(rDecoderNet, self).__init__()
if len(out_dim) not in [1, 2, 3]:
raise ValueError("in_dim must be (h, w), (h, w, c), or (h*w*c,)")
self.reshape = out_dim
out_dim = torch.prod(tt(out_dim)).item()
self.coord_latent = coord_latent(latent_dim, hidden_dim)
self.fc_layers = make_fc_layers(
hidden_dim, hidden_dim, num_layers, activation)
self.out = nn.Linear(hidden_dim, 1) # need to generalize to multi-channel (c > 1)
self.activation_out = nn.Sigmoid() if sigmoid_out else lambda x: x
def forward(self, x_coord: torch.Tensor, z: torch.Tensor) -> torch.Tensor:
"""
Forward pass
"""
x = self.coord_latent(x_coord, z)
x = self.fc_layers(x)
x = self.activation_out(self.out(x))
return x.view(-1, *self.reshape)
class coord_latent(nn.Module):
"""
The "spatial" part of the rVAE's decoder that allows for translational
and rotational invariance (based on https://arxiv.org/abs/1909.11663)
"""
def __init__(self,
latent_dim: int,
out_dim: int,
activation_out: bool = True) -> None:
"""
Iniitalizes modules parameters
"""
super(coord_latent, self).__init__()
self.fc_coord = nn.Linear(2, out_dim)
self.fc_latent = nn.Linear(latent_dim, out_dim, bias=False)
self.activation = nn.Tanh() if activation_out else None
def forward(self,
x_coord: torch.Tensor,
z: torch.Tensor) -> torch.Tensor:
"""
Forward pass
"""
batch_dim, n = x_coord.size()[:2]
x_coord = x_coord.reshape(batch_dim * n, -1)
h_x = self.fc_coord(x_coord)
h_x = h_x.reshape(batch_dim, n, -1)
h_z = self.fc_latent(z)
h = h_x.add(h_z.unsqueeze(1))
h = h.reshape(batch_dim * n, -1)
if self.activation is not None:
h = self.activation(h)
return h
class rVAE(nn.Module):
"""
Variational autoencoder with rotational and/or transaltional invariance
"""
def __init__(self,
in_dim: Tuple[int, int],
latent_dim: int = 2,
coord: int = 3,
num_classes: int = 0,
hidden_dim_e: int = 128,
hidden_dim_d: int = 128,
num_layers_e: int = 2,
num_layers_d: int = 2,
activation: str = "tanh",
softplus_sd: bool = True,
sigmoid_out: bool = True,
seed: int = 1,
**kwargs
) -> None:
"""
Initializes rVAE's modules and parameters
"""
super(rVAE, self).__init__()
pyro.clear_param_store()
set_deterministic_mode(seed)
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.encoder_net = fcEncoderNet(
in_dim, latent_dim+coord, hidden_dim_e,
num_layers_e, activation, softplus_sd)
if coord not in [0, 1, 2, 3]:
raise ValueError("'coord' argument must be 0, 1, 2 or 3")
dnet = rDecoderNet if coord in [1, 2, 3] else fcDecoderNet
self.decoder_net = dnet(
in_dim, latent_dim+num_classes, hidden_dim_d,
num_layers_d, activation, sigmoid_out)
self.z_dim = latent_dim + coord
self.coord = coord
self.num_classes = num_classes
self.grid = imcoordgrid(in_dim).to(self.device)
self.dx_prior = tt(kwargs.get("dx_prior", 0.1)).to(self.device)
self.to(self.device)
def model(self,
x: torch.Tensor,
y: Optional[torch.Tensor] = None,
**kwargs: float) -> torch.Tensor:
"""
Defines the model p(x|z)p(z)
"""
# register PyTorch module `decoder_net` with Pyro
pyro.module("decoder_net", self.decoder_net)
# KLD scale factor (see e.g. https://openreview.net/pdf?id=Sy2fzU9gl)
beta = kwargs.get("scale_factor", 1.)
reshape_ = torch.prod(tt(x.shape[1:])).item()
with pyro.plate("data", x.shape[0]):
# setup hyperparameters for prior p(z)
z_loc = x.new_zeros(torch.Size((x.shape[0], self.z_dim)))
z_scale = x.new_ones(torch.Size((x.shape[0], self.z_dim)))
# sample from prior (value will be sampled by guide when computing the ELBO)
with pyro.poutine.scale(scale=beta):
z = pyro.sample("latent", dist.Normal(z_loc, z_scale).to_event(1))
if self.coord > 0: # rotationally- and/or translationaly-invariant mode
# Split latent variable into parts for rotation
# and/or translation and image content
phi, dx, z = self.split_latent(z)
if torch.sum(dx) != 0:
dx = (dx * self.dx_prior).unsqueeze(1)
# transform coordinate grid
grid = self.grid.expand(x.shape[0], *self.grid.shape)
x_coord_prime = transform_coordinates(grid, phi, dx)
# Add class label (if any)
if y is not None:
y = to_onehot(y, self.num_classes)
z = torch.cat([z, y], dim=-1)
# decode the latent code z together with the transformed coordiantes (if any)
dec_args = (x_coord_prime, z) if self.coord else (z,)
loc_img = self.decoder_net(*dec_args)
# score against actual images ("binary cross-entropy loss")
pyro.sample(
"obs", dist.Bernoulli(loc_img.view(-1, reshape_), validate_args=False).to_event(1),
obs=x.view(-1, reshape_))
def guide(self,
x: torch.Tensor,
y: Optional[torch.Tensor] = None,
**kwargs: float) -> torch.Tensor:
"""
Defines the guide q(z|x)
"""
# register PyTorch module `encoder_net` with Pyro
pyro.module("encoder_net", self.encoder_net)
# KLD scale factor (see e.g. https://openreview.net/pdf?id=Sy2fzU9gl)
beta = kwargs.get("scale_factor", 1.)
with pyro.plate("data", x.shape[0]):
# use the encoder to get the parameters used to define q(z|x)
z_loc, z_scale = self.encoder_net(x)
# sample the latent code z
with pyro.poutine.scale(scale=beta):
pyro.sample("latent", dist.Normal(z_loc, z_scale).to_event(1))
def split_latent(self, z: torch.Tensor) -> Tuple[torch.Tensor]:
"""
Split latent variable into parts for rotation
and/or translation and image content
"""
phi, dx = tt(0), tt(0)
# rotation + translation
if self.coord == 3:
phi = z[:, 0] # encoded angle
dx = z[:, 1:3] # translation
z = z[:, 3:] # image content
# translation only
elif self.coord == 2:
dx = z[:, :2]
z = z[:, 2:]
# rotation only
elif self.coord == 1:
phi = z[:, 0]
z = z[:, 1:]
return phi, dx, z
def _encode(self, x_new: torch.Tensor, **kwargs: int) -> torch.Tensor:
"""
Encodes data using a trained inference (encoder) network
in a batch-by-batch fashion
"""
def inference() -> np.ndarray:
with torch.no_grad():
encoded = self.encoder_net(x_i)
encoded = torch.cat(encoded, -1).cpu()
return encoded
x_new = x_new.to(self.device)
num_batches = kwargs.get("num_batches", 10)
batch_size = len(x_new) // num_batches
z_encoded = []
for i in range(num_batches):
x_i = x_new[i*batch_size:(i+1)*batch_size]
z_encoded_i = inference()
z_encoded.append(z_encoded_i)
x_i = x_new[(i+1)*batch_size:]
if len(x_i) > 0:
z_encoded_i = inference()
z_encoded.append(z_encoded_i)
return torch.cat(z_encoded)
def encode(self, x_new: torch.Tensor, **kwargs: int) -> torch.Tensor:
"""
Encodes data using a trained inference (encoder) network
(this is baiscally a wrapper for self._encode)
"""
if isinstance(x_new, torch.utils.data.DataLoader):
x_new = train_loader.dataset.tensors[0]
z = self._encode(x_new)
z_loc = z[:, :self.z_dim]
z_scale = z[:, self.z_dim:]
return z_loc, z_scale