atom-detection / atoms_detection /create_crop_dataset_2048.py
Romain Graux
Initial commit with ml code and webapp
b2ffc9b
raw
history blame
6.67 kB
import os
import numpy as np
import pandas as pd
from PIL import Image
from atoms_detection.image_preprocessing import dl_prepro_image
from atoms_detection.dataset import CoordinatesDataset
from utils.paths import CROPS_PATH, CROPS_DATASET, PT_DATASET
from utils.constants import Split, CropsColumns
np.random.seed(777)
window_size = (21, 21)
halfx_window = ((window_size[0] - 1) // 2)
halfy_window = ((window_size[1] - 1) // 2)
def get_gaussian_kernel(size=33, mean=0, sigma=0.2):
# Initializing value of x-axis and y-axis
# in the range -1 to 1
x, y = np.meshgrid(np.linspace(-1, 1, size), np.linspace(-1, 1, size))
dst = np.sqrt(x * x + y * y)
# Calculating Gaussian array
kernel = np.exp(-((dst - mean) ** 2 / (2.0 * sigma ** 2)))
return kernel
def generate_support_img(coordinates, window_size):
support_img = np.zeros((2048, 2048))
kernel = get_gaussian_kernel(size=window_size[0])
halfx_window = ((window_size[0] - 1) // 2)
halfy_window = ((window_size[1] - 1) // 2)
for x, y in coordinates:
x_range = (x - halfx_window, x + halfx_window + 1)
y_range = (y - halfy_window, y + halfy_window + 1)
x_diff = [0, 0]
y_diff = [0, 0]
if x_range[0] < 0:
x_diff[0] = 0 - x_range[0]
if x_range[1] > 2048:
x_diff[1] = x_range[1] - 2048
if y_range[0] < 0:
y_diff[0] = 0 - y_range[0]
if y_range[1] > 2048:
y_diff[1] = y_range[1] - 2048
x_diff = tuple(int(item) for item in x_diff)
y_diff = tuple(int(item) for item in y_diff)
real_kernel = kernel[x_diff[0]:window_size[0] - x_diff[1], y_diff[0]:window_size[1] - y_diff[1]]
real_x_crop = (x_range[0] + x_diff[0], x_range[1] - x_diff[1])
real_y_crop = (y_range[0] + y_diff[0], y_range[1] - y_diff[1])
real_x_crop = tuple(int(item) for item in real_x_crop)
real_y_crop = tuple(int(item) for item in real_y_crop)
support_img[real_x_crop[0]:real_x_crop[1], real_y_crop[0]:real_y_crop[1]] += real_kernel
support_img = support_img.T
return support_img
def open_image(img_filename):
img = Image.open(img_filename)
np_img = np.asarray(img).astype(np.float32)
np_img = dl_prepro_image(np_img)
img = Image.fromarray(np_img)
return img
def create_crop(img: Image, x_center: int, y_center: int):
crop_coords = (
x_center - halfx_window,
y_center - halfy_window,
x_center + halfx_window + 1,
y_center + halfy_window + 1
)
crop = img.crop(crop_coords)
return crop
def create_crops_dataset(crops_folder: str, coords_csv: str, crops_dataset: str):
if not os.path.exists(crops_folder):
os.makedirs(crops_folder)
crop_name_list = []
orig_name_list = []
x_list = []
y_list = []
label_list = []
n_positives = 0
label = 1
dataset = CoordinatesDataset(coords_csv)
print('Creating positive crops...')
for data_filename, label_filename in dataset.iterate_data(Split.TRAIN):
if label_filename is None:
continue
print(data_filename)
orig_img_name = os.path.basename(data_filename)
img_name = os.path.splitext(orig_img_name)[0]
img = open_image(data_filename)
coordinates = dataset.load_coordinates(label_filename)
for x_center, y_center in coordinates:
crop = create_crop(img, x_center, y_center)
crop_name = "{}_{}_{}.tif".format(img_name, x_center, y_center)
crop.save(os.path.join(crops_folder, crop_name))
crop_name_list.append(crop_name)
orig_name_list.append(orig_img_name)
x_list.append(x_center)
y_list.append(y_center)
label_list.append(label)
n_positives += 1
label = 0
no_train_images = dataset.split_length(Split.TRAIN)
neg_crops_per_image = [n_positives // no_train_images + (1 if x < n_positives % no_train_images else 0) for x in range(no_train_images)]
print('Creating negative crops...')
for (data_filename, label_filename), no_neg_crops in zip(dataset.iterate_data(Split.TRAIN), neg_crops_per_image):
print(data_filename)
orig_img_name = os.path.basename(data_filename)
img_name = os.path.splitext(orig_img_name)[0]
img = open_image(data_filename)
if label_filename:
coordinates = dataset.load_coordinates(label_filename)
support_map = generate_support_img(coordinates, window_size)
else:
support_map = None
for _ in range(no_neg_crops):
x_rand = np.random.randint(0, 2048)
y_rand = np.random.randint(0, 2048)
if support_map is not None:
while support_map[x_rand, y_rand] != 0:
x_rand = np.random.randint(0, 2048)
y_rand = np.random.randint(0, 2048)
x_center, y_center = x_rand, y_rand
crop = create_crop(img, x_center, y_center)
crop_name = "{}_{}_{}.tif".format(img_name, x_center, y_center)
crop.save(os.path.join(crops_folder, crop_name))
crop_name_list.append(crop_name)
orig_name_list.append(orig_img_name)
x_list.append(x_center)
y_list.append(y_center)
label_list.append(label)
df_data = {
CropsColumns.FILENAME: crop_name_list,
CropsColumns.ORIGINAL: orig_name_list,
CropsColumns.X: x_list,
CropsColumns.Y: y_list,
CropsColumns.LABEL: label_list
}
df = pd.DataFrame(df_data, columns=[
CropsColumns.FILENAME,
CropsColumns.ORIGINAL,
CropsColumns.X,
CropsColumns.Y,
CropsColumns.LABEL
])
df_pos = df[df.Label == 1]
df_neg = df[df.Label == 0]
pos_len = len(df_pos)
neg_len = len(df_neg)
pos_train, pos_val, pos_test = np.split(df_pos.sample(frac=1), [int(0.8*pos_len), int(0.9*pos_len)])
neg_train, neg_val, neg_test = np.split(df_neg.sample(frac=1), [int(0.8*neg_len), int(0.9*neg_len)])
pos_train[CropsColumns.SPLIT] = Split.TRAIN
pos_val[CropsColumns.SPLIT] = Split.VAL
pos_test[CropsColumns.SPLIT] = Split.TEST
neg_train[CropsColumns.SPLIT] = Split.TRAIN
neg_val[CropsColumns.SPLIT] = Split.VAL
neg_test[CropsColumns.SPLIT] = Split.TEST
df_with_splits = pd.concat((pos_train, neg_train, pos_val, neg_val, pos_test, neg_test), axis=0)
df_with_splits.to_csv(crops_dataset, header=True, index=False)
if __name__ == "__main__":
create_crops_dataset(CROPS_PATH, PT_DATASET, CROPS_DATASET)