Spaces:
Sleeping
Sleeping
import matplotlib.pyplot as plt | |
import numpy as np | |
import seaborn as sns | |
def make_confusion_matrix(cf, | |
group_names=None, | |
categories='auto', | |
count=True, | |
percent=True, | |
cbar=True, | |
cbar_range=(None, None), | |
xyticks=True, | |
xyplotlabels=True, | |
sum_stats=True, | |
figsize=None, | |
cmap='Blues', | |
title=None): | |
''' | |
This function will make a pretty plot of an sklearn Confusion Matrix cm using a Seaborn heatmap visualization. | |
Arguments | |
--------- | |
cf: confusion matrix to be passed in | |
group_names: List of strings that represent the labels row by row to be shown in each square. | |
categories: List of strings containing the categories to be displayed on the x,y axis. Default is 'auto' | |
count: If True, show the raw number in the confusion matrix. Default is True. | |
normalize: If True, show the proportions for each category. Default is True. | |
cbar: If True, show the color bar. The cbar values are based off the values in the confusion matrix. | |
Default is True. | |
xyticks: If True, show x and y ticks. Default is True. | |
xyplotlabels: If True, show 'True Label' and 'Predicted Label' on the figure. Default is True. | |
sum_stats: If True, display summary statistics below the figure. Default is True. | |
figsize: Tuple representing the figure size. Default will be the matplotlib rcParams value. | |
cmap: Colormap of the values displayed from matplotlib.pyplot.cm. Default is 'Blues' | |
See http://matplotlib.org/examples/color/colormaps_reference.html | |
title: Title for the heatmap. Default is None. | |
''' | |
# CODE TO GENERATE TEXT INSIDE EACH SQUARE | |
blanks = ['' for i in range(cf.size)] | |
if group_names and len(group_names) == cf.size: | |
group_labels = ["{}\n".format(value) for value in group_names] | |
else: | |
group_labels = blanks | |
if count: | |
group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten()] | |
else: | |
group_counts = blanks | |
if percent: | |
group_percentages = ["{0:.2%}".format(value) for value in cf.flatten() / np.sum(cf)] | |
else: | |
group_percentages = blanks | |
box_labels = [f"{v1}{v2}{v3}".strip() for v1, v2, v3 in zip(group_labels, group_counts, group_percentages)] | |
box_labels = np.asarray(box_labels).reshape(cf.shape[0], cf.shape[1]) | |
# CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS | |
if sum_stats: | |
# Accuracy is sum of diagonal divided by total observations | |
accuracy = np.trace(cf) / float(np.sum(cf)) | |
# if it is a binary confusion matrix, show some more stats | |
if len(cf) == 2: | |
# Metrics for Binary Confusion Matrices | |
precision = cf[1, 1] / sum(cf[:, 1]) | |
recall = cf[1, 1] / sum(cf[1, :]) | |
f1_score = 2 * precision * recall / (precision + recall) | |
stats_text = "\n\nAccuracy={:0.3f}\nPrecision={:0.3f}\nRecall={:0.3f}\nF1 Score={:0.3f}".format( | |
accuracy, precision, recall, f1_score) | |
else: | |
stats_text = "\n\nAccuracy={:0.3f}".format(accuracy) | |
else: | |
stats_text = "" | |
# SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS | |
if figsize == None: | |
# Get default figure size if not set | |
figsize = plt.rcParams.get('figure.figsize') | |
if xyticks == False: | |
# Do not show categories if xyticks is False | |
categories = False | |
# MAKE THE HEATMAP VISUALIZATION | |
plt.figure(figsize=figsize) | |
sns.heatmap(cf, annot=box_labels, fmt="", cmap=cmap, cbar=cbar, vmin=cbar_range[0], vmax=cbar_range[1], xticklabels=categories, yticklabels=categories) | |
if xyplotlabels: | |
plt.ylabel('True label') | |
plt.xlabel('Predicted label' + stats_text) | |
else: | |
plt.xlabel(stats_text) | |
if title: | |
plt.title(title) | |