Spaces:
Sleeping
Sleeping
File size: 14,243 Bytes
b2ffc9b a691f55 b2ffc9b 6cb080f b2ffc9b 6cb080f b2ffc9b a730958 6cb080f b2ffc9b 6cb080f b2ffc9b 6cb080f b2ffc9b 0c0ff09 b2ffc9b 0c0ff09 b2ffc9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author : Romain Graux
@date : 2023 April 25, 14:39:03
@last modified : 2024 February 01, 15:59:37
"""
# TODO : add the training of the vae
# TODO : add the description of the settings
import gradio as gr
import json
import numpy as np
import shutil
import sys
import tempfile
import torch
from PIL import Image, ImageDraw
from app.dl_inference import inference_fn
from app.knn import knn, segment_image, bokeh_plot_knn, color_palette
from app.tiff_utils import extract_physical_metadata
from collections import namedtuple
from datetime import datetime
from zipfile import ZipFile
block_state_entry = namedtuple(
"block_state", ["results", "knn_results", "physical_metadata"]
)
if torch_availbale := torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
print(f"Is CUDA available: {torch_availbale}")
if ".." not in sys.path:
sys.path.append("..")
from utils.constants import ModelArgs
def inf(img, n_species, threshold, architecture):
# Get the coordinates of the atoms
img, results = inference_fn(architecture, img, threshold, n_species=n_species)
draw = ImageDraw.Draw(img)
for (k, v), color in zip(results["species"].items(), color_palette):
color = "#" + "".join([f"{int(255 * x):02x}" for x in color])
draw.text((5, 5 + 15 * k), f"species {k}", fill=color)
for x, y in v["coords"]:
draw.ellipse(
[x - 5, y - 5, x + 5, y + 5],
outline=color,
width=2,
)
return img, results
def batch_fn(files, n_species, threshold, architecture, block_state):
block_state = {}
if not files:
raise ValueError("No files were uploaded")
gallery = []
for file in files:
error_physical_metadata = None
try:
physical_metadata = extract_physical_metadata(file.name)
if physical_metadata.unit != "nm":
raise ValueError(f"Unit of {file.name} is not nm, cannot process it")
except Exception as e:
error_physical_metadata = e
physical_metadata = None
original_file_name = file.name.split("/")[-1]
img, results = inf(file.name, n_species, threshold, architecture)
mask = segment_image(file.name)
gallery.append((img, original_file_name))
if physical_metadata is not None:
factor = 1.0 - np.mean(mask)
scale = physical_metadata.pixel_width
edge = physical_metadata.pixel_width * physical_metadata.width
knn_results = {
k: knn(results["species"][k]["coords"], scale, factor, edge)
for k in results["species"]
}
else:
knn_results = None
block_state[original_file_name] = block_state_entry(
results, knn_results, physical_metadata
)
knn_args = [
(
original_file_name,
{
k: block_state[original_file_name].knn_results[k]["distances"]
for k in block_state[original_file_name].knn_results
},
)
for original_file_name in block_state
if block_state[original_file_name].knn_results is not None
]
if len(knn_args) > 0:
bokeh_plot = gr.update(
value=bokeh_plot_knn(knn_args, with_cumulative=True), visible=True
)
else:
bokeh_plot = gr.update(visible=False)
return (
gallery,
block_state,
gr.update(visible=True),
bokeh_plot,
gr.HTML.update(
value=f"<p style='width:fit-content; background-color:rgba(255, 0, 0, 0.75); border-radius:5px; padding:5px; color:white;'>{error_physical_metadata}</p>",
visible=bool(error_physical_metadata),
),
)
class NumpyEncoder(json.JSONEncoder):
"""Special json encoder for numpy types"""
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def batch_export_files(gallery, block_state):
# Return images, coords as csv and a zip containing everything
files = []
tmpdir = tempfile.mkdtemp()
with ZipFile(
f"{tmpdir}/all_results_{datetime.now().isoformat()}.zip", "w"
) as zipObj:
# Add all metatada
for data_dict, original_file_name in gallery:
file_name = original_file_name.split(".")[0]
# Save the image
pred_map_path = f"{tmpdir}/pred_map_{file_name}.png"
file_path = data_dict["name"]
shutil.copy(file_path, pred_map_path)
zipObj.write(pred_map_path, arcname=f"{file_name}/pred_map.png")
files.append(pred_map_path)
# Save the coords
results = block_state[original_file_name].results
coords_path = f"{tmpdir}/coords_{file_name}.csv"
with open(coords_path, "w") as f:
f.write("x,y,likelihood,specie,confidence\n")
for k, v in results["species"].items():
for (x, y), likelihood, confidence in zip(
v["coords"], v["likelihood"], v["confidence"]
):
f.write(f"{x},{y},{likelihood},{k},{confidence}\n")
zipObj.write(coords_path, arcname=f"{file_name}/coords.csv")
files.append(coords_path)
# Save the knn results
if block_state[original_file_name].knn_results is not None:
knn_results = block_state[original_file_name].knn_results
knn_path = f"{tmpdir}/knn_results_{file_name}.json"
with open(knn_path, "w") as f:
json.dump(knn_results, f, cls=NumpyEncoder)
zipObj.write(knn_path, arcname=f"{file_name}/knn_results.json")
files.append(knn_path)
# Save the physical metadata
if block_state[original_file_name].physical_metadata is not None:
physical_metadata = block_state[original_file_name].physical_metadata
metadata_path = f"{tmpdir}/physical_metadata_{file_name}.json"
with open(metadata_path, "w") as f:
json.dump(physical_metadata._asdict(), f, cls=NumpyEncoder)
zipObj.write(
metadata_path, arcname=f"{file_name}/physical_metadata.json"
)
files.append(metadata_path)
files.append(zipObj.filename)
return gr.update(value=files[::-1], visible=True)
CSS = """
.header {
display: flex;
justify-content: center;
align-items: center;
padding: var(--block-padding);
border-radius: var(--block-radius);
background: var(--button-secondary-background-hover);
}
img {
width: 150px;
margin-right: 40px;
}
.title {
text-align: left;
}
h1 {
font-size: 36px;
margin-bottom: 10px;
}
p {
font-size: 18px;
}
input {
width: 70px;
}
@media (max-width: 600px) {
h1 {
font-size: 24px;
}
p {
font-size: 14px;
}
}
"""
with gr.Blocks(css=CSS) as block:
block_state = gr.State({})
gr.HTML(
"""
<div class="header">
<a href="https://www.nccr-catalysis.ch/" target="_blank">
<img src="https://www.nccr-catalysis.ch/site/assets/files/1/nccr_catalysis_logo.svg" alt="NCCR Catalysis">
</a>
<div class="title">
<h1>Atom Detection</h1>
<p>Quantitative description of metal center organization in single-atom catalysts</p>
</div>
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
n_species = gr.Number(
label="Number of species",
value=1,
precision=0,
visible=True,
)
threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.8,
label="Threshold",
visible=True,
)
architecture = gr.Dropdown(
label="Architecture",
choices=[
ModelArgs.BASICCNN,
# ModelArgs.RESNET18,
],
value=ModelArgs.BASICCNN,
visible=False,
)
files = gr.Files(
label="Images",
file_types=[".tif", ".tiff"],
type="file",
interactive=True,
)
button = gr.Button(value="Run")
with gr.Column():
with gr.Tab("Masked prediction") as masked_tab:
masked_prediction_gallery = gr.Gallery(label="Masked predictions")
with gr.Tab("Nearest neighbors") as nn_tab:
bokeh_plot = gr.Plot(show_label=False)
error_html = gr.HTML(visible=False)
export_btn = gr.Button(value="Export files", visible=False)
exported_files = gr.File(
label="Exported files",
file_count="multiple",
type="file",
interactive=False,
visible=False,
)
button.click(
batch_fn,
inputs=[files, n_species, threshold, architecture, block_state],
outputs=[
masked_prediction_gallery,
block_state,
export_btn,
bokeh_plot,
error_html,
],
)
export_btn.click(
batch_export_files, [masked_prediction_gallery, block_state], [exported_files]
)
with gr.Accordion(label="How to β¨", open=True):
gr.HTML(
"""
<div style="font-size: 14px;">
<ol>
<li>Select one or multiple microscopy images as <b>.tiff files</b> π·π¬</li>
<li>Upload individual or multiple .tif images for processing π€π’</li>
<li>Export the output files. The generated zip archive will contain:
<ul>
<li>An image with overlayed atomic positions ππ</li>
<li>A table of atomic positions (in px) along with their probability ππ</li>
<li>Physical metadata of the respective images ππ</li>
<li>JSON-formatted plot data ππ</li>
</ul>
</li>
</ol>
<details style="padding: 5px; border-radius: 5px; background: var(--button-secondary-background-hover); font-size: 14px;">
<summary>Note</summary>
<ul style="padding-left: 10px;">
<li>
Structural descriptors beyond pixel-wise atom detections are available as outputs only if images present an embedded real-space calibration (e.g., inΒ <a href="https://imagej.nih.gov/ij/docs/guide/146-30.html#sub:Set-Scale...">nm px-1</a>) π·π¬
</li>
<li>
32-bit images will be processed correctly, but appear as mostly white in the image preview window
</li>
</ul>
</details>
</div>
"""
)
with gr.Accordion(label="Disclaimer and License", open=False):
gr.HTML(
"""
<div class="acknowledgments">
<h3>Disclaimer</h3>
<p>NCCR licenses the Atom Detection Web-App utilisation βas isβ with no express or implied warranty of any kind. NCCR specifically disclaims all express or implied warranties to the fullest extent allowed by applicable law, including without limitation all implied warranties of merchantability, title or fitness for any particular purpose or non-infringement. No oral or written information or advice given by the authors shall create or form the basis of any warranty of any kind.</p>
<h3>License</h3>
<p>Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the βSoftwareβ), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
<br>
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
<br>
The software is provided βas isβ, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.</p>
</div>
"""
)
gr.HTML(
"""
<div style="background-color: var(--secondary-100); border-radius: 5px; padding: 10px;">
<p style='font-size: 14px; color: black'>To reference the use of this web app in a publication, please refer to the Atom Detection web app and the development described in this publication: K. Rossi et al. Adv. Mater. 2023, <a href="https://doi.org/10.1002/adma.202307991">doi:10.1002/adma.202307991</a>.</p>
</div>
"""
)
block.launch(
share=False,
show_error=True,
server_name="0.0.0.0",
enable_queue=True,
)
|