File size: 7,472 Bytes
b2ffc9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# run VAE + GMM assignement
import argparse
from typing import List

import numpy as np
# import rasterio
import torch
import warnings
import os
import re
import pandas as pd
from PIL import Image

from sklearn.mixture import GaussianMixture

from atoms_detection.create_crop_dataset import create_crop
from atoms_detection.vae_utilities.vae_model import rVAE
from atoms_detection.vae_utilities.vae_svi_train import init_dataloader, SVItrainer
from atoms_detection.image_preprocessing import dl_prepro_image

"""
Code sourced from:
https://colab.research.google.com/github/ziatdinovmax/notebooks_for_medium/blob/main/pyroVAE_MNIST_medium.ipynb

"""

numbers = re.compile(r'(\d+)')

def numericalSort(value):
    parts = numbers.split(value)
    parts[1::2] = map(int, parts[1::2])
    return parts

warnings.filterwarnings("ignore", module="torchvision.datasets")


def get_crops_from_prediction_csvs(pred_crop_file):
    data = pd.read_csv(pred_crop_file)
    xx = data['x'].values
    yy = data['y'].values
    coords = zip(xx,yy)  

    img_file = data['Filename'][0]
    likelihood = data['Likelihood'].values
    img_path = os.path.join('data/tif_data', img_file)

    img = Image.open(img_path)
    np_img = np.asarray(img).astype(np.float64)
    np_img = dl_prepro_image(np_img)
    img = Image.fromarray(np_img)

    crops = list()
    coords_list = []
    for x, y in coords:
        coords_list.append([x,y])
        new_crop = create_crop(img, x, y)
        crops.append(new_crop)
   
    print(coords_list[0])
    print(np_img[0])

    coords_array = np.array(coords_list)

    return crops, coords_array, likelihood, img_file


def classify_crop_species(args):
    # crop_list = get_crops_from_folder(crops_source_folder='./Ni')
    crop_list, crop_coords, likelihood, img_filename = get_crops_from_prediction_csvs(args.pred_crop_file)
    crop_tensor = np.array(crop_list)
    
    # Assuming crop_tensor is a list or array of Image objects
    processed_images = []
    for image in crop_tensor:
        # Convert the Image to a NumPy array
        image_array = np.array(image)
        # Append the processed image array to the list
        processed_images.append(image_array)
    # Convert the processed images list to a NumPy array
    processed_images = np.array(processed_images)
    # Convert the processed_images array to float32
    processed_images = processed_images.astype(np.float32)

    #print(processed_images.shape)

    rvae = rVAE(in_dim=(21, 21), latent_dim=args.latent_dim, coord=args.coord, seed=args.seed)

    train_data = torch.from_numpy(processed_images).float()
    # train_data = torch.from_numpy(crop_tensor).float()
    train_loader = init_dataloader(train_data, batch_size=args.batchsize)
    latent_crop_tensor = train_vae(rvae, train_data, train_loader, args)

    gmm = GaussianMixture(n_components=args.n_species, reg_covar=args.GMMcovar, random_state=args.seed).fit(
        latent_crop_tensor)
    preds = gmm.predict(latent_crop_tensor)
    print(preds)
    pred_proba = gmm.predict_proba(latent_crop_tensor)
    pred_proba = [pred_proba[i, pred] for i, pred in enumerate(preds)]
    
    # To order clusters, signal-to-noise ratio OR median (across crops) of some intensity quality (eg mean top-5% int)
    cluster_median_values = list()
    for k in range(args.n_species):
        print(k)
        relevant_crops = processed_images[preds == k]
        crop_95_percentile = np.percentile(relevant_crops, q=95, axis=0)
        img_means = []
        for crop, q in zip(relevant_crops, crop_95_percentile):
            if (crop >= q).any():
                print(crop.mean())
                img_means.append(crop.mean())
            #img_means.append(crop.mean(axis=0, where=crop >= q))
        cluster_median_value = np.median(np.array(img_means))
        cluster_median_values.append(cluster_median_value)
    sorted_clusters = sorted([(mval, c_id) for c_id, mval in enumerate(cluster_median_values)])

    with open(f"data/detection_data/Multimetallic_{img_filename}.csv", "a") as f:
        f.write("Filename,x,y,Likelihood,cluster,cluster_confidence\n")
        for _, c_id in sorted_clusters:
            c_idd = np.array([c_id])
            pred_proba = np.array(pred_proba)
            relevant_crops_coords = crop_coords[preds == c_idd]
            relevant_crops_likelihood = likelihood[preds == c_idd]
            relevant_crops_confidence = pred_proba[preds == c_idd]
            #print(relevant_crops_confidence)
            for coords, l, c in zip(relevant_crops_coords, relevant_crops_likelihood, relevant_crops_confidence):
                x, y = coords
                f.write(f"{img_filename},{x},{y},{l},{c_id},{c}\n")



def train_vae(rvae, train_data, train_loader, args):
    # Initialize SVI trainer
    trainer = SVItrainer(rvae)
    for e in range(args.epochs):
        trainer.step(train_loader, scale_factor=args.scale_factor)
        trainer.print_statistics()
    z_mean, z_sd = rvae.encode(train_data)
    latent_crop_tensor = z_mean
    return latent_crop_tensor


def get_crops_from_folder(crops_source_folder) -> List[np.ndarray]:
    ffiles = []
    files = []
    for dirname, dirnames, filenames in os.walk(crops_source_folder):
        # print path to all subdirectories first.
        for subdirname in dirnames:
            files.append(os.path.join(dirname, subdirname))

        # print path to all filenames.
        for filename in filenames:
            files.append(os.path.join(dirname, filename))

        for filename in sorted((filenames), key=numericalSort):
            ffiles.append(os.path.join(filename))
    crops = ffiles
    # print(len(crops))
    path_crops = './Ni/'
    all_img = []
    for i in range(0, len(crops)):
        src_path = path_crops + crops[i]
        img = rasterio.open(src_path)
        test = np.reshape(img.read([1]), (21, 21))
        all_img.append(np.array(test))
    return all_img


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'pred_crop_file',
        type=str,
        help="Path to the CSV of predicted crop locations (eg in data/detection_data/X/Y.csv)"
    )
    parser.add_argument(
        "-latent_dim",
        type=int,
        default=50,
        help="Experiment extension name"
    )
    parser.add_argument(
        "-seed",
        type=int,
        default=444,
        help="Random seed"
    )
    parser.add_argument(
        "-coord",
        type=int,
        default=3,
        help="Amount of equivariances, 0: None,1: Rotational, 2: Translational, 3:Rotational and Translational"
    )
    parser.add_argument(
        "-batchsize",
        type=int,
        default=100,
        help="Batch size for the VAE model"
    )
    parser.add_argument(
        "-epochs",
        type=int,
        default=20,
        help="Number of training epochs for the VAE"
    )
    parser.add_argument(
        "-scale_factor",
        type=int,
        default=3,
        help="Number of training epochs for the VAE"
    )
    parser.add_argument(
        "-n_species",
        type=int,
        default=2,
        help="Number of chemical species expected in the sample."
    )
    parser.add_argument(
        "-GMMcovar",
        type=float,
        default=0.0001,
        help="Regcovar for the training of the GMM clustering algorithm."
    )
    return parser.parse_args()


if __name__ == "__main__":
    args = get_args()
    print(args)
    classify_crop_species(args)