defectdetection / app06.py
nazlicanto's picture
model_dir update w/ absolute path
355d137
raw
history blame
2.83 kB
<<<<<<< HEAD
import streamlit as st
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
from PIL import Image
import numpy as np
import torch
# Load the model and processor
model_dir = "/home/user/app/defectdetection/model"
model = SegformerForSemanticSegmentation.from_pretrained(model_path)
preprocessor = SegformerImageProcessor.from_pretrained(model_path)
model = SegformerForSemanticSegmentation.from_pretrained(model_dir)
processor = SegformerImageProcessor.from_pretrained(model_dir)
model.eval()
st.title("PCB Defect Detection")
# Upload image in Streamlit
uploaded_file = st.file_uploader("Upload a PCB image", type=["jpg", "png"])
if uploaded_file:
# Preprocess the image
test_image = Image.open(uploaded_file).convert("RGB")
inputs = processor(images=test_image, return_tensors="pt")
# Model inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process
semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[test_image.size[::-1]])[0]
semantic_map = np.uint8(semantic_map)
semantic_map[semantic_map==1] = 255
semantic_map[semantic_map==2] = 195
semantic_map[semantic_map==3] = 135
semantic_map[semantic_map==4] = 75
# Display the results
st.image(test_image, caption="Uploaded Image", use_column_width=True)
st.image(semantic_map, caption="Predicted Defects", use_column_width=True, channels="GRAY")
=======
import streamlit as st
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
from PIL import Image
import numpy as np
import torch
# Load the model and processor
model_dir = "/home/user/app/defectdetection/model"
model = SegformerForSemanticSegmentation.from_pretrained(model_dir)
processor = SegformerImageProcessor.from_pretrained(model_dir)
model.eval()
st.title("PCB Defect Detection")
# Upload image in Streamlit
uploaded_file = st.file_uploader("Upload a PCB image", type=["jpg", "png"])
if uploaded_file:
# Preprocess the image
test_image = Image.open(uploaded_file).convert("RGB")
inputs = processor(images=test_image, return_tensors="pt")
# Model inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process
semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[test_image.size[::-1]])[0]
semantic_map = np.uint8(semantic_map)
semantic_map[semantic_map==1] = 255
semantic_map[semantic_map==2] = 195
semantic_map[semantic_map==3] = 135
semantic_map[semantic_map==4] = 75
# Display the results
st.image(test_image, caption="Uploaded Image", use_column_width=True)
st.image(semantic_map, caption="Predicted Defects", use_column_width=True, channels="GRAY")
>>>>>>> 36ac725dd03eaeedd3c4601d12a8b80b846b7647