taki0112 commited on
Commit
9894f0a
β€’
1 Parent(s): b14aa85
Files changed (2) hide show
  1. app.py +9 -8
  2. requirements.txt +2 -2
app.py CHANGED
@@ -1,7 +1,8 @@
 
1
  import torch
2
  from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid
3
  import gradio as gr
4
- import os, json, cv2
5
  import numpy as np
6
  from PIL import Image
7
 
@@ -107,12 +108,13 @@ def load_example_controlnet():
107
  inf_object_name = config["inference_info"]["inf_object_list"][0]
108
 
109
  canny_path = './assets/depth_dir/gundam.png'
110
- image_info = [image_path, canny_path, style_name, "", 1, 0.5, 50] # empty text
111
 
112
  examples.append(image_info)
113
 
114
  return examples
115
 
 
116
  def controlnet_fn(image_path, depth_image_path, style_name, content_text, output_number, controlnet_scale=0.5, diffusion_step=50):
117
  """
118
 
@@ -215,7 +217,6 @@ def controlnet_fn(image_path, depth_image_path, style_name, content_text, output
215
  # make grid
216
  grid = create_image_grid(images, n_row, n_col)
217
 
218
- torch.cuda.empty_cache()
219
  return grid
220
 
221
 
@@ -225,16 +226,16 @@ description_md = """
225
  ### πŸ“– [[Paper](https://arxiv.org/abs/2402.12974)] | ✨ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | ✨ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)]
226
  ### πŸ”₯ [[Default ver](https://huggingface.co/spaces/naver-ai/VisualStylePrompting)]
227
  ---
228
- ### Visual Style Prompting also works on `ControlNet` which specifies the shape of the results by depthmap or keypoints.
229
-
230
- ### To try out our demo with ControlNet,
231
  1. Upload an `image for depth control`. An off-the-shelf model will produce the depthmap from it.
232
  2. Choose `ControlNet scale` which determines the alignment to the depthmap.
233
  3. Choose a `style reference` from the collection of images below.
234
  4. Enter the `text prompt`. (`Empty text` is okay, but a depthmap description helps.)
235
  5. Choose the `number of outputs`.
236
 
237
- ### To achieve faster results, we recommend lowering the diffusion steps to 30.
238
  ### Enjoy ! πŸ˜„
239
  """
240
 
@@ -249,7 +250,7 @@ iface_controlnet = gr.Interface(
249
  gr.components.Slider(minimum=0.5, maximum=10, step=0.5, value=0.5, label="Controlnet scale"),
250
  gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
251
  ],
252
- outputs=gr.components.Image(type="pil"),
253
  title="🎨 Visual Style Prompting (w/ ControlNet)",
254
  description=description_md,
255
  examples=load_example_controlnet(),
 
1
+ import spaces
2
  import torch
3
  from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid
4
  import gradio as gr
5
+ import os, json
6
  import numpy as np
7
  from PIL import Image
8
 
 
108
  inf_object_name = config["inference_info"]["inf_object_list"][0]
109
 
110
  canny_path = './assets/depth_dir/gundam.png'
111
+ image_info = [image_path, canny_path, style_name, "", 1, 0.5, 50]
112
 
113
  examples.append(image_info)
114
 
115
  return examples
116
 
117
+ @spaces.GPU
118
  def controlnet_fn(image_path, depth_image_path, style_name, content_text, output_number, controlnet_scale=0.5, diffusion_step=50):
119
  """
120
 
 
217
  # make grid
218
  grid = create_image_grid(images, n_row, n_col)
219
 
 
220
  return grid
221
 
222
 
 
226
  ### πŸ“– [[Paper](https://arxiv.org/abs/2402.12974)] | ✨ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | ✨ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)]
227
  ### πŸ”₯ [[Default ver](https://huggingface.co/spaces/naver-ai/VisualStylePrompting)]
228
  ---
229
+ ### ✨ Visual Style Prompting also works on `ControlNet` which specifies the shape of the results by depthmap or keypoints.
230
+ ### ‼️ w/ ControlNet ver does not support user style images.
231
+ ### πŸ”₯ To try out our demo with ControlNet,
232
  1. Upload an `image for depth control`. An off-the-shelf model will produce the depthmap from it.
233
  2. Choose `ControlNet scale` which determines the alignment to the depthmap.
234
  3. Choose a `style reference` from the collection of images below.
235
  4. Enter the `text prompt`. (`Empty text` is okay, but a depthmap description helps.)
236
  5. Choose the `number of outputs`.
237
 
238
+ ### πŸ‘‰ To achieve faster results, we recommend lowering the diffusion steps to 30.
239
  ### Enjoy ! πŸ˜„
240
  """
241
 
 
250
  gr.components.Slider(minimum=0.5, maximum=10, step=0.5, value=0.5, label="Controlnet scale"),
251
  gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps")
252
  ],
253
+ outputs=gr.components.Image(label="Generated Image"),
254
  title="🎨 Visual Style Prompting (w/ ControlNet)",
255
  description=description_md,
256
  examples=load_example_controlnet(),
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- torch==1.13.1
2
  diffusers
3
  transformers
4
  accelerate
@@ -8,5 +8,5 @@ gradio
8
  triton
9
  torchvision
10
  opencv-python
11
- xformers==0.0.16
12
 
 
1
+ torch
2
  diffusers
3
  transformers
4
  accelerate
 
8
  triton
9
  torchvision
10
  opencv-python
11
+ xformers
12