multimodalart HF staff commited on
Commit
c947e95
1 Parent(s): b5965be

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -43
app.py CHANGED
@@ -10,11 +10,16 @@ from slugify import slugify
10
  import requests
11
  import torch
12
  import zipfile
 
13
  import urllib.parse
14
  import gc
15
  from diffusers import StableDiffusionPipeline
16
  from huggingface_hub import snapshot_download
17
 
 
 
 
 
18
  css = '''
19
  .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
20
  .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
@@ -68,9 +73,14 @@ def count_files(*inputs):
68
  Training_Steps = file_counter*200*2
69
  else:
70
  Training_Steps = file_counter*200
71
- return([gr.update(visible=True), gr.update(visible=True, value=f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. The training should take around {round(Training_Steps/1.1, 2)} seconds, or {round((Training_Steps/1.1)/60, 2)} minutes.
72
- The setup, compression and uploading the model can take up to 20 minutes.<br>As the T4-Small GPU costs US$0.60 for 1h, <span style="font-size: 120%"><b>the estimated cost for this training is US${round((((Training_Steps/1.1)/3600)+0.3+0.1)*0.60, 2)}.</b></span><br><br>
73
- If you check the box below the GPU attribution will automatically removed after training is done and the model is uploaded. If not, don't forget to come back here and swap the hardware back to CPU.<br><br>''')])
 
 
 
 
 
74
 
75
  def pad_image(image):
76
  w, h = image.size
@@ -86,17 +96,17 @@ def pad_image(image):
86
  return new_image
87
 
88
  def train(*inputs):
 
 
 
89
  torch.cuda.empty_cache()
90
  if 'pipe' in globals():
91
  del pipe
92
  gc.collect()
93
-
94
- if "IS_SHARED_UI" in os.environ:
95
- raise gr.Error("This Space only works in duplicated instances")
96
-
97
  if os.path.exists("output_model"): shutil.rmtree('output_model')
98
  if os.path.exists("instance_images"): shutil.rmtree('instance_images')
99
- if os.path.exists("diffusers_model.zip"): os.remove("diffusers_model.zip")
100
  if os.path.exists("model.ckpt"): os.remove("model.ckpt")
101
  if os.path.exists("hastrained.success"): os.remove("hastrained.success")
102
  file_counter = 0
@@ -168,17 +178,19 @@ def train(*inputs):
168
  shutil.copytree(f"{safety_checker}/feature_extractor", "output_model/feature_extractor")
169
  shutil.copytree(f"{safety_checker}/safety_checker", "output_model/safety_checker")
170
  shutil.copy(f"model_index.json", "output_model/model_index.json")
171
- print("Zipping model file...")
172
- with zipfile.ZipFile('diffusers_model.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:
173
- zipdir('output_model/', zipf)
174
- print("Training completed!")
175
-
176
  if(not remove_attribution_after):
 
 
 
177
  if os.path.exists("intraining.lock"): os.remove("intraining.lock")
178
  trained_file = open("hastrained.success", "w")
179
  trained_file.close()
 
180
  return [
181
- gr.update(visible=True, value=["diffusers_model.zip"]), #result
182
  gr.update(visible=True), #try_your_model
183
  gr.update(visible=True), #push_to_hub
184
  gr.update(visible=True), #convert_button
@@ -281,26 +293,35 @@ Sample pictures of:
281
  repo_id=model_id,
282
  token=hf_token
283
  )
284
- if(not comes_from_automated):
285
- extra_message = "Don't forget to remove the GPU attribution after you play with it."
286
- else:
287
- extra_message = "The GPU has been removed automatically as requested, and you can try the model via the model page"
288
- api.create_discussion(repo_id=os.environ['SPACE_ID'], title=f"Your model {model_name} has finished trained from the Dreambooth Train Spaces!", description=f"Your model has been successfully uploaded to: https://huggingface.co/{model_id}. {extra_message}",repo_type="space", token=hf_token)
 
289
 
290
- return [gr.update(visible=True, value=f"Successfully uploaded your model. Access it [here](https://huggingface.co/{model_id})"), gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])]
291
 
292
  def convert_to_ckpt():
293
  convert("output_model", "model.ckpt")
294
- return gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"])
295
 
296
  def check_status(top_description):
297
  if os.path.exists("hastrained.success"):
298
- update_top_tag = gr.update(value=f'''
299
- <div class="gr-prose" style="max-width: 80%">
300
- <h2>Your model has finished training ✅</h2>
301
- <p>Yay, congratulations on training your model. Scroll down to play with with it, save it (either downloading it or on the Hugging Face Hub). Once you are done, your model is safe, and you don't want to train a new one, go to the <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}">settings page</a> and downgrade your Space to a CPU Basic</p>
302
- </div>
303
- ''')
 
 
 
 
 
 
 
 
304
  show_outputs = True
305
  elif os.path.exists("intraining.lock"):
306
  update_top_tag = gr.update(value='''
@@ -313,8 +334,8 @@ def check_status(top_description):
313
  else:
314
  update_top_tag = gr.update(value=top_description)
315
  show_outputs = False
316
- if os.path.exists("diffusers_model.zip"):
317
- update_files_tag = gr.update(visible=show_outputs, value=["diffusers_model.zip"])
318
  else:
319
  update_files_tag = gr.update(visible=show_outputs)
320
  return [
@@ -330,23 +351,30 @@ def checkbox_swap(checkbox):
330
 
331
  with gr.Blocks(css=css) as demo:
332
  with gr.Box():
333
- if "IS_SHARED_UI" in os.environ:
334
  top_description = gr.HTML(f'''
335
  <div class="gr-prose" style="max-width: 80%">
336
  <h2>Attention - This Space doesn't work in this shared UI</h2>
337
- <p>For it to work, you have to duplicate the Space and run it on your own profile using a (paid) private T4 GPU for training. As each T4 costs US$0.60/h, it should cost < US$1 to train a model with less than 100 images using default settings!&nbsp;&nbsp;<a class="duplicate-button" style="display:inline-block" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
338
  <img class="instruction" src="file/duplicate.png">
339
  <img class="arrow" src="file/arrow.png" />
340
  </div>
341
  ''')
 
 
 
 
 
 
 
342
  else:
343
  top_description = gr.HTML(f'''
344
- <div class="gr-prose" style="max-width: 80%">
345
- <h2>You have successfully duplicated the Dreambooth Training Space 🎉</h2>
346
- <p>If you haven't already, <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">attribute a T4 GPU to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
347
- </div>
348
- ''')
349
- gr.Markdown("# Dreambooth training")
350
  gr.Markdown("Customize Stable Diffusion by training it on a few examples of concepts, up to 3 concepts on the same model. This Space is based on TheLastBen's [fast-DreamBooth Colab](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) with [🧨 diffusers](https://github.com/huggingface/diffusers)")
351
 
352
  with gr.Row() as what_are_you_training:
@@ -406,14 +434,15 @@ with gr.Blocks(css=css) as demo:
406
  gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style` as follows: The number of steps is calculated by number of images uploaded multiplied by 20. The text-encoder is frozen after 10% of the steps for a style, 30% of the steps for an object and is fully trained for persons.")
407
  steps = gr.Number(label="How many steps", value=800)
408
  perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30)
409
-
410
  with gr.Box(visible=False) as training_summary:
411
  training_summary_text = gr.HTML("", visible=False, label="Training Summary")
412
- training_summary_checkbox = gr.Checkbox(label="Automatically remove paid GPU attribution and upload model to the Hugging Face Hub after training", value=False)
413
- training_summary_model_name = gr.Textbox(label="Name of your model", visible=False)
414
- training_summary_where_to_upload = gr.Dropdown(["My personal profile", "Public Library"], label="Upload to", visible=False)
415
- training_summary_token_message = gr.Markdown("[A Hugging Face write access token](https://huggingface.co/settings/tokens), go to \"New token\" -> Role : Write. A regular read token won't work here.", visible=False)
416
- training_summary_token = gr.Textbox(label="Hugging Face Write Token", type="password", visible=False)
 
417
 
418
  train_btn = gr.Button("Start Training")
419
 
 
10
  import requests
11
  import torch
12
  import zipfile
13
+ import tarfile
14
  import urllib.parse
15
  import gc
16
  from diffusers import StableDiffusionPipeline
17
  from huggingface_hub import snapshot_download
18
 
19
+
20
+ is_spaces = True if "SPACE_ID" in os.environ else False
21
+ is_shared_ui = True if "IS_SHARED_UI" in os.environ else False
22
+
23
  css = '''
24
  .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
25
  .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
 
73
  Training_Steps = file_counter*200*2
74
  else:
75
  Training_Steps = file_counter*200
76
+ if(is_spaces):
77
+ summary_sentence = f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps. The training should take around {round(Training_Steps/1.1, 2)} seconds, or {round((Training_Steps/1.1)/60, 2)} minutes.
78
+ The setup, compression and uploading the model can take up to 20 minutes.<br>As the T4-Small GPU costs US$0.60 for 1h, <span style="font-size: 120%"><b>the estimated cost for this training is US${round((((Training_Steps/1.1)/3600)+0.3+0.1)*0.60, 2)}.</b></span><br><br>
79
+ If you check the box below the GPU attribution will automatically removed after training is done and the model is uploaded. If not, don't forget to come back here and swap the hardware back to CPU.<br><br>'''
80
+ else:
81
+ summary_sentence = f'''You are going to train {concept_counter} {type_of_thing}(s), with {file_counter} images for {Training_Steps} steps.<br><br>'''
82
+
83
+ return([gr.update(visible=True), gr.update(visible=True, value=summary_sentence)])
84
 
85
  def pad_image(image):
86
  w, h = image.size
 
96
  return new_image
97
 
98
  def train(*inputs):
99
+ if is_shared_ui:
100
+ raise gr.Error("This Space only works in duplicated instances")
101
+
102
  torch.cuda.empty_cache()
103
  if 'pipe' in globals():
104
  del pipe
105
  gc.collect()
106
+
 
 
 
107
  if os.path.exists("output_model"): shutil.rmtree('output_model')
108
  if os.path.exists("instance_images"): shutil.rmtree('instance_images')
109
+ if os.path.exists("diffusers_model.tar"): os.remove("diffusers_model.tar")
110
  if os.path.exists("model.ckpt"): os.remove("model.ckpt")
111
  if os.path.exists("hastrained.success"): os.remove("hastrained.success")
112
  file_counter = 0
 
178
  shutil.copytree(f"{safety_checker}/feature_extractor", "output_model/feature_extractor")
179
  shutil.copytree(f"{safety_checker}/safety_checker", "output_model/safety_checker")
180
  shutil.copy(f"model_index.json", "output_model/model_index.json")
181
+
182
+ #with zipfile.ZipFile('diffusers_model.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:
183
+ # zipdir('output_model/', zipf)
 
 
184
  if(not remove_attribution_after):
185
+ print("Archiving model file...")
186
+ with tarfile.open("diffusers_model.tar", "w") as tar:
187
+ tar.add("diffusers_model", arcname=os.path.basename("diffusers_model"))
188
  if os.path.exists("intraining.lock"): os.remove("intraining.lock")
189
  trained_file = open("hastrained.success", "w")
190
  trained_file.close()
191
+ print("Training completed!")
192
  return [
193
+ gr.update(visible=True, value=["diffusers_model.tar"]), #result
194
  gr.update(visible=True), #try_your_model
195
  gr.update(visible=True), #push_to_hub
196
  gr.update(visible=True), #convert_button
 
293
  repo_id=model_id,
294
  token=hf_token
295
  )
296
+ if is_spaces:
297
+ if(not comes_from_automated):
298
+ extra_message = "Don't forget to remove the GPU attribution after you play with it."
299
+ else:
300
+ extra_message = "The GPU has been removed automatically as requested, and you can try the model via the model page"
301
+ api.create_discussion(repo_id=os.environ['SPACE_ID'], title=f"Your model {model_name} has finished trained from the Dreambooth Train Spaces!", description=f"Your model has been successfully uploaded to: https://huggingface.co/{model_id}. {extra_message}",repo_type="space", token=hf_token)
302
 
303
+ return [gr.update(visible=True, value=f"Successfully uploaded your model. Access it [here](https://huggingface.co/{model_id})"), gr.update(visible=True, value=["diffusers_model.tar", "model.ckpt"])]
304
 
305
  def convert_to_ckpt():
306
  convert("output_model", "model.ckpt")
307
+ return gr.update(visible=True, value=["diffusers_model.tar", "model.ckpt"])
308
 
309
  def check_status(top_description):
310
  if os.path.exists("hastrained.success"):
311
+ if is_spaces:
312
+ update_top_tag = gr.update(value=f'''
313
+ <div class="gr-prose" style="max-width: 80%">
314
+ <h2>Your model has finished training ✅</h2>
315
+ <p>Yay, congratulations on training your model. Scroll down to play with with it, save it (either downloading it or on the Hugging Face Hub). Once you are done, your model is safe, and you don't want to train a new one, go to the <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}">settings page</a> and downgrade your Space to a CPU Basic</p>
316
+ </div>
317
+ ''')
318
+ else:
319
+ update_top_tag = gr.update(value=f'''
320
+ <div class="gr-prose" style="max-width: 80%">
321
+ <h2>Your model has finished training ✅</h2>
322
+ <p>Yay, congratulations on training your model. Scroll down to play with with it, save it (either downloading it or on the Hugging Face Hub).</p>
323
+ </div>
324
+ ''')
325
  show_outputs = True
326
  elif os.path.exists("intraining.lock"):
327
  update_top_tag = gr.update(value='''
 
334
  else:
335
  update_top_tag = gr.update(value=top_description)
336
  show_outputs = False
337
+ if os.path.exists("diffusers_model.tar"):
338
+ update_files_tag = gr.update(visible=show_outputs, value=["diffusers_model.tar"])
339
  else:
340
  update_files_tag = gr.update(visible=show_outputs)
341
  return [
 
351
 
352
  with gr.Blocks(css=css) as demo:
353
  with gr.Box():
354
+ if is_shared_ui:
355
  top_description = gr.HTML(f'''
356
  <div class="gr-prose" style="max-width: 80%">
357
  <h2>Attention - This Space doesn't work in this shared UI</h2>
358
+ <p>For it to work, you can either run locally or duplicate the Space and run it on your own profile using a (paid) private T4 GPU for training. As each T4 costs US$0.60/h, it should cost < US$1 to train most models using default settings!&nbsp;&nbsp;<a class="duplicate-button" style="display:inline-block" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
359
  <img class="instruction" src="file/duplicate.png">
360
  <img class="arrow" src="file/arrow.png" />
361
  </div>
362
  ''')
363
+ elif(is_spaces):
364
+ top_description = gr.HTML(f'''
365
+ <div class="gr-prose" style="max-width: 80%">
366
+ <h2>You have successfully duplicated the Dreambooth Training Space 🎉</h2>
367
+ <p>If you haven't already, <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">attribute a T4 GPU to it (via the Settings tab)</a> and run the training below. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
368
+ </div>
369
+ ''')
370
  else:
371
  top_description = gr.HTML(f'''
372
+ <div class="gr-prose" style="max-width: 80%">
373
+ <h2>You have successfully cloned the Dreambooth Training Space locally 🎉</h2>
374
+ <p>If you are having problems with the requirements, try installing xformers with `%pip install git+https://github.com/facebookresearch/xformers@1d31a3a#egg=xformers`</p>
375
+ </div>
376
+ ''')
377
+ gr.Markdown("# Dreambooth Training UI")
378
  gr.Markdown("Customize Stable Diffusion by training it on a few examples of concepts, up to 3 concepts on the same model. This Space is based on TheLastBen's [fast-DreamBooth Colab](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) with [🧨 diffusers](https://github.com/huggingface/diffusers)")
379
 
380
  with gr.Row() as what_are_you_training:
 
434
  gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style` as follows: The number of steps is calculated by number of images uploaded multiplied by 20. The text-encoder is frozen after 10% of the steps for a style, 30% of the steps for an object and is fully trained for persons.")
435
  steps = gr.Number(label="How many steps", value=800)
436
  perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30)
437
+
438
  with gr.Box(visible=False) as training_summary:
439
  training_summary_text = gr.HTML("", visible=False, label="Training Summary")
440
+ if(is_spaces):
441
+ training_summary_checkbox = gr.Checkbox(label="Automatically remove paid GPU attribution and upload model to the Hugging Face Hub after training", value=False)
442
+ training_summary_model_name = gr.Textbox(label="Name of your model", visible=False)
443
+ training_summary_where_to_upload = gr.Dropdown(["My personal profile", "Public Library"], label="Upload to", visible=False)
444
+ training_summary_token_message = gr.Markdown("[A Hugging Face write access token](https://huggingface.co/settings/tokens), go to \"New token\" -> Role : Write. A regular read token won't work here.", visible=False)
445
+ training_summary_token = gr.Textbox(label="Hugging Face Write Token", type="password", visible=False)
446
 
447
  train_btn = gr.Button("Start Training")
448