Muennighoff commited on
Commit
bd1cf3d
1 Parent(s): e2f398c

Update metrics

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -1,8 +1,8 @@
1
  from datasets import load_dataset
2
  import gradio as gr
3
- import pandas as pd
4
  from huggingface_hub import HfApi, hf_hub_download
5
  from huggingface_hub.repocard import metadata_load
 
6
 
7
  TASKS = [
8
  "BitextMining",
@@ -278,8 +278,8 @@ def get_mteb_average():
278
  # Approximation (Missing Bitext Mining & including some nans)
279
  NUM_SCORES = DATA_OVERALL.shape[0] * DATA_OVERALL.shape[1]
280
 
281
- print("OVERALLDATA", DATA_OVERALL)
282
- DATA_OVERALL.to_csv("overall.csv")
283
 
284
  DATA_OVERALL.insert(1, f"Average ({len(TASK_LIST_EN)} datasets)", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
285
  DATA_OVERALL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
@@ -315,9 +315,10 @@ with block:
315
  gr.Markdown(f"""
316
  Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗
317
 
 
 
318
  - **Total Scores**: >{NUM_SCORES}
319
  - **Total Models**: {len(DATA_OVERALL)}
320
- - **Total Users**: TODO
321
  """)
322
  with gr.Tabs():
323
  with gr.TabItem("Overall"):
 
1
  from datasets import load_dataset
2
  import gradio as gr
 
3
  from huggingface_hub import HfApi, hf_hub_download
4
  from huggingface_hub.repocard import metadata_load
5
+ import pandas as pd
6
 
7
  TASKS = [
8
  "BitextMining",
 
278
  # Approximation (Missing Bitext Mining & including some nans)
279
  NUM_SCORES = DATA_OVERALL.shape[0] * DATA_OVERALL.shape[1]
280
 
281
+ # Debugging:
282
+ # DATA_OVERALL.to_csv("overall.csv")
283
 
284
  DATA_OVERALL.insert(1, f"Average ({len(TASK_LIST_EN)} datasets)", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
285
  DATA_OVERALL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
 
315
  gr.Markdown(f"""
316
  Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗
317
 
318
+ - **Total Datasets**: 56
319
+ - **Total Languages**: 117
320
  - **Total Scores**: >{NUM_SCORES}
321
  - **Total Models**: {len(DATA_OVERALL)}
 
322
  """)
323
  with gr.Tabs():
324
  with gr.TabItem("Overall"):