Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,569 Bytes
84bfd88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler
import torch
from rdkit import Chem, DataStructs
import pandas as pd
import pickle as pkl
import numpy as np
from sklearn.preprocessing import StandardScaler
import sys
# sys.path.append("../utils/")
from utils.parallel import *
from utils.chem import *
from utils.sequence import *
class Preprocessor:
def __init__(
self,
path: str,
radius: int = 2,
n_bits: int = 1024,
aa_embedding: str = "prottrans_t5_xl_u50",
num_workers: int = 1,
):
self.path = path
self.radius = radius
self.n_bits = n_bits
self.aa_embedding = aa_embedding
self.num_workers = num_workers
self.data = None
self.fp = None
self.aa = None
self.split = None
self.label = None
self.load_data()
self.process_data()
def load_data(self):
if os.path.isfile(self.path):
self.data = pd.read_csv(self.path, low_memory=False)
else:
raise ValueError("No data file found in the specified path")
def process_data(self):
if "smiles" not in self.data.columns:
raise ValueError("No smiles column found in the data")
if "sequence" not in self.data.columns:
raise ValueError("No sequence column found in the data")
smiles = self.data.smiles.tolist()
seq = self.data.sequence.tolist()
if "split" in self.data.columns:
self.split = self.data.split.tolist()
if "label" in self.data.columns:
self.label = self.data.label.tolist()
if self.num_workers > 1:
mols = parallel(get_mols, self.num_workers, smiles)
fps = parallel(get_fp, self.num_workers, mols, self.radius, self.n_bits)
else:
mols = get_mols(smiles)
fps = get_fp(mols, self.radius, self.n_bits)
self.fp = store_fp(fps, self.n_bits)
self.aa = encode_sequences(seq, self.aa_embedding)
def return_generator(
self,
device,
batch_size: int = 512,
include_negatives: bool = False,
shuffle: bool = True,
validation_split: float = None,
) -> (DataLoader, DataLoader):
if self.split is None and self.label is None:
print("No split or label columns found in the dataset")
dataset = MolAADataset(device, self.fp, self.aa)
elif self.split is not None:
print("Splitting data into train and validation sets from the dataset without considering labels")
train_fp, train_aa, val_fp, val_aa = [], [], [], []
for i in range(len(self.fp)):
if self.split[i] == "train":
train_fp.append(self.fp[i])
train_aa.append(self.aa[i])
elif self.split[i] == "val":
val_fp.append(self.fp[i])
val_aa.append(self.aa[i])
train_dataset = MolAADataset(device, train_fp, train_aa)
val_dataset = MolAADataset(device, val_fp, val_aa)
print(f"Train: {len(train_fp)}, Validation: {len(val_fp)}")
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
validation_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle)
return train_loader, validation_loader
else:
print("Splitting data into train and validation sets from the dataset")
train_fp, train_aa, val_fp, val_aa = [], [], [], []
for i in range(len(self.fp)):
if self.split[i] == "train":
if include_negatives and self.label[i] == 0:
train_fp.append(self.fp[i])
train_aa.append(self.aa[i] * -1)
elif self.label[i] == 1:
train_fp.append(self.fp[i])
train_aa.append(self.aa[i])
elif self.split[i] == "val":
if include_negatives and self.label[i] == 0:
val_fp.append(self.fp[i])
val_aa.append(self.aa[i] * -1)
elif self.label[i] == 1:
val_fp.append(self.fp[i])
val_aa.append(self.aa[i])
train_dataset = MolAADataset(device, train_fp, train_aa)
val_dataset = MolAADataset(device, val_fp, val_aa)
print(f"Train: {len(train_fp)}, Validation: {len(val_fp)}")
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
validation_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle)
return train_loader, validation_loader
if validation_split is not None:
print("Splitting data into train and validation by fractionation from the dataset")
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(validation_split * dataset_size))
if shuffle:
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
train_loader = DataLoader(
dataset, batch_size=batch_size, sampler=train_sampler
)
validation_loader = DataLoader(
dataset, batch_size=batch_size, sampler=valid_sampler
)
return train_loader, validation_loader
else:
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
return train_loader, None
class MolAADataset(Dataset):
def __init__(self, device, mol, aa):
self.mol = mol
self.aa = aa
self.device = device
def __len__(self):
"""
Method necessary for Pytorch training
"""
return len(self.mol)
def __getitem__(self, idx):
"""
Method necessary for Pytorch training
"""
mol_sample = torch.tensor(self.mol[idx], dtype=torch.float32)
aa_sample = torch.tensor(self.aa[idx], dtype=torch.float32)
mol_sample = mol_sample.to(self.device)
aa_sample = aa_sample.to(self.device)
return mol_sample, aa_sample
|