import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load LLaMA 3.2 model and tokenizer model_name = "meta-llama/LLaMA-3.2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Define the inference function def generate_text(prompt, max_length=100, temperature=0.7): inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(inputs['input_ids'], max_length=max_length, temperature=temperature) return tokenizer.decode(output[0], skip_special_tokens=True) # Create the Gradio interface iface = gr.Interface( fn=generate_text, inputs=[ gr.inputs.Textbox(label="Enter your prompt", placeholder="Start typing..."), gr.inputs.Slider(minimum=50, maximum=200, default=100, label="Max Length"), gr.inputs.Slider(minimum=0.1, maximum=1.0, default=0.7, label="Temperature"), ], outputs="text", title="LLaMA 3.2 Text Generator", description="Enter a prompt to generate text using the LLaMA 3.2 model.", theme="compact", ) # Launch the Gradio app iface.launch()