LlaMA3.2 testing interface with Gradio
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load LLaMA 3.2 model and tokenizer
|
5 |
+
model_name = "meta-llama/LLaMA-3.2" # Replace this with the correct model ID if necessary
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Define the inference function
|
10 |
+
def generate_text(prompt, max_length=100, temperature=0.7):
|
11 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
+
output = model.generate(inputs['input_ids'], max_length=max_length, temperature=temperature)
|
13 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
14 |
+
|
15 |
+
# Create the Gradio interface
|
16 |
+
iface = gr.Interface(
|
17 |
+
fn=generate_text,
|
18 |
+
inputs=[
|
19 |
+
gr.inputs.Textbox(label="Enter your prompt", placeholder="Start typing..."),
|
20 |
+
gr.inputs.Slider(minimum=50, maximum=200, default=100, label="Max Length"),
|
21 |
+
gr.inputs.Slider(minimum=0.1, maximum=1.0, default=0.7, label="Temperature"),
|
22 |
+
],
|
23 |
+
outputs="text",
|
24 |
+
title="LLaMA 3.2 Text Generator",
|
25 |
+
description="Enter a prompt to generate text using the LLaMA 3.2 model.",
|
26 |
+
theme="compact",
|
27 |
+
)
|
28 |
+
|
29 |
+
# Launch the Gradio app
|
30 |
+
iface.launch()
|