# Evaluate with Librispeech test-clean, ~3s prompt to generate 4-10s audio (the way of valle/voicebox evaluation) import sys import os sys.path.append(os.getcwd()) import multiprocessing as mp import numpy as np from model.utils import ( get_librispeech_test, run_asr_wer, run_sim, ) eval_task = "wer" # sim | wer lang = "en" metalst = "data/librispeech_pc_test_clean_cross_sentence.lst" librispeech_test_clean_path = "/LibriSpeech/test-clean" # test-clean path gen_wav_dir = "PATH_TO_GENERATED" # generated wavs gpus = [0, 1, 2, 3, 4, 5, 6, 7] test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path) ## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book, ## leading to a low similarity for the ground truth in some cases. # test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth local = False if local: # use local custom checkpoint dir asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3" else: asr_ckpt_dir = "" # auto download to cache dir wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth" # --------------------------- WER --------------------------- if eval_task == "wer": wers = [] with mp.Pool(processes=len(gpus)) as pool: args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set] results = pool.map(run_asr_wer, args) for wers_ in results: wers.extend(wers_) wer = round(np.mean(wers) * 100, 3) print(f"\nTotal {len(wers)} samples") print(f"WER : {wer}%") # --------------------------- SIM --------------------------- if eval_task == "sim": sim_list = [] with mp.Pool(processes=len(gpus)) as pool: args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set] results = pool.map(run_sim, args) for sim_ in results: sim_list.extend(sim_) sim = round(sum(sim_list) / len(sim_list), 3) print(f"\nTotal {len(sim_list)} samples") print(f"SIM : {sim}")