import gc import json import os import platform import psutil import random import signal import shutil import subprocess import sys import tempfile import time from glob import glob import click import gradio as gr import librosa import numpy as np import torch import torchaudio from datasets import Dataset as Dataset_ from datasets.arrow_writer import ArrowWriter from safetensors.torch import save_file from scipy.io import wavfile from transformers import pipeline from f5_tts.api import F5TTS from f5_tts.model.utils import convert_char_to_pinyin training_process = None system = platform.system() python_executable = sys.executable or "python" tts_api = None last_checkpoint = "" last_device = "" path_data = "data" device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" pipe = None # Load metadata def get_audio_duration(audio_path): """Calculate the duration of an audio file.""" audio, sample_rate = torchaudio.load(audio_path) num_channels = audio.shape[0] return audio.shape[1] / (sample_rate * num_channels) def clear_text(text): """Clean and prepare text by lowering the case and stripping whitespace.""" return text.lower().strip() def get_rms( y, frame_length=2048, hop_length=512, pad_mode="constant", ): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py padding = (int(frame_length // 2), int(frame_length // 2)) y = np.pad(y, padding, mode=pad_mode) axis = -1 # put our new within-frame axis at the end for now out_strides = y.strides + tuple([y.strides[axis]]) # Reduce the shape on the framing axis x_shape_trimmed = list(y.shape) x_shape_trimmed[axis] -= frame_length - 1 out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides) if axis < 0: target_axis = axis - 1 else: target_axis = axis + 1 xw = np.moveaxis(xw, -1, target_axis) # Downsample along the target axis slices = [slice(None)] * xw.ndim slices[axis] = slice(0, None, hop_length) x = xw[tuple(slices)] # Calculate power power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True) return np.sqrt(power) class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py def __init__( self, sr: int, threshold: float = -40.0, min_length: int = 2000, min_interval: int = 300, hop_size: int = 20, max_sil_kept: int = 2000, ): if not min_length >= min_interval >= hop_size: raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size") if not max_sil_kept >= hop_size: raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size") min_interval = sr * min_interval / 1000 self.threshold = 10 ** (threshold / 20.0) self.hop_size = round(sr * hop_size / 1000) self.win_size = min(round(min_interval), 4 * self.hop_size) self.min_length = round(sr * min_length / 1000 / self.hop_size) self.min_interval = round(min_interval / self.hop_size) self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) def _apply_slice(self, waveform, begin, end): if len(waveform.shape) > 1: return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)] else: return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)] # @timeit def slice(self, waveform): if len(waveform.shape) > 1: samples = waveform.mean(axis=0) else: samples = waveform if samples.shape[0] <= self.min_length: return [waveform] rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0) sil_tags = [] silence_start = None clip_start = 0 for i, rms in enumerate(rms_list): # Keep looping while frame is silent. if rms < self.threshold: # Record start of silent frames. if silence_start is None: silence_start = i continue # Keep looping while frame is not silent and silence start has not been recorded. if silence_start is None: continue # Clear recorded silence start if interval is not enough or clip is too short is_leading_silence = silence_start == 0 and i > self.max_sil_kept need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length if not is_leading_silence and not need_slice_middle: silence_start = None continue # Need slicing. Record the range of silent frames to be removed. if i - silence_start <= self.max_sil_kept: pos = rms_list[silence_start : i + 1].argmin() + silence_start if silence_start == 0: sil_tags.append((0, pos)) else: sil_tags.append((pos, pos)) clip_start = pos elif i - silence_start <= self.max_sil_kept * 2: pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin() pos += i - self.max_sil_kept pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept if silence_start == 0: sil_tags.append((0, pos_r)) clip_start = pos_r else: sil_tags.append((min(pos_l, pos), max(pos_r, pos))) clip_start = max(pos_r, pos) else: pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept if silence_start == 0: sil_tags.append((0, pos_r)) else: sil_tags.append((pos_l, pos_r)) clip_start = pos_r silence_start = None # Deal with trailing silence. total_frames = rms_list.shape[0] if silence_start is not None and total_frames - silence_start >= self.min_interval: silence_end = min(total_frames, silence_start + self.max_sil_kept) pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start sil_tags.append((pos, total_frames + 1)) # Apply and return slices. ####音频+起始时间+终止时间 if len(sil_tags) == 0: return [[waveform, 0, int(total_frames * self.hop_size)]] else: chunks = [] if sil_tags[0][0] > 0: chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)]) for i in range(len(sil_tags) - 1): chunks.append( [ self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]), int(sil_tags[i][1] * self.hop_size), int(sil_tags[i + 1][0] * self.hop_size), ] ) if sil_tags[-1][1] < total_frames: chunks.append( [ self._apply_slice(waveform, sil_tags[-1][1], total_frames), int(sil_tags[-1][1] * self.hop_size), int(total_frames * self.hop_size), ] ) return chunks # terminal def terminate_process_tree(pid, including_parent=True): try: parent = psutil.Process(pid) except psutil.NoSuchProcess: # Process already terminated return children = parent.children(recursive=True) for child in children: try: os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL except OSError: pass if including_parent: try: os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL except OSError: pass def terminate_process(pid): if system == "Windows": cmd = f"taskkill /t /f /pid {pid}" os.system(cmd) else: terminate_process_tree(pid) def start_training( dataset_name="", exp_name="F5TTS_Base", learning_rate=1e-4, batch_size_per_gpu=400, batch_size_type="frame", max_samples=64, grad_accumulation_steps=1, max_grad_norm=1.0, epochs=11, num_warmup_updates=200, save_per_updates=400, last_per_steps=800, finetune=True, file_checkpoint_train="", tokenizer_type="pinyin", tokenizer_file="", mixed_precision="fp16", ): global training_process, tts_api if tts_api is not None: del tts_api gc.collect() torch.cuda.empty_cache() tts_api = None path_project = os.path.join(path_data, dataset_name) if not os.path.isdir(path_project): yield ( f"There is not project with name {dataset_name}", gr.update(interactive=True), gr.update(interactive=False), ) return file_raw = os.path.join(path_project, "raw.arrow") if not os.path.isfile(file_raw): yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False) return # Check if a training process is already running if training_process is not None: return "Train run already!", gr.update(interactive=False), gr.update(interactive=True) yield "start train", gr.update(interactive=False), gr.update(interactive=False) # Command to run the training script with the specified arguments if tokenizer_file == "": if dataset_name.endswith("_pinyin"): tokenizer_type = "pinyin" elif dataset_name.endswith("_char"): tokenizer_type = "char" else: tokenizer_file = "custom" dataset_name = dataset_name.replace("_pinyin", "").replace("_char", "") if mixed_precision != "none": fp16 = f"--mixed_precision={mixed_precision}" else: fp16 = "" cmd = ( f"accelerate launch {fp16} finetune-cli.py --exp_name {exp_name} " f"--learning_rate {learning_rate} " f"--batch_size_per_gpu {batch_size_per_gpu} " f"--batch_size_type {batch_size_type} " f"--max_samples {max_samples} " f"--grad_accumulation_steps {grad_accumulation_steps} " f"--max_grad_norm {max_grad_norm} " f"--epochs {epochs} " f"--num_warmup_updates {num_warmup_updates} " f"--save_per_updates {save_per_updates} " f"--last_per_steps {last_per_steps} " f"--dataset_name {dataset_name}" ) if finetune: cmd += f" --finetune {finetune}" if file_checkpoint_train != "": cmd += f" --file_checkpoint_train {file_checkpoint_train}" if tokenizer_file != "": cmd += f" --tokenizer_path {tokenizer_file}" cmd += f" --tokenizer {tokenizer_type} " print(cmd) try: # Start the training process training_process = subprocess.Popen(cmd, shell=True) time.sleep(5) yield "train start", gr.update(interactive=False), gr.update(interactive=True) # Wait for the training process to finish training_process.wait() time.sleep(1) if training_process is None: text_info = "train stop" else: text_info = "train complete !" except Exception as e: # Catch all exceptions # Ensure that we reset the training process variable in case of an error text_info = f"An error occurred: {str(e)}" training_process = None yield text_info, gr.update(interactive=True), gr.update(interactive=False) def stop_training(): global training_process if training_process is None: return "Train not run !", gr.update(interactive=True), gr.update(interactive=False) terminate_process_tree(training_process.pid) training_process = None return "train stop", gr.update(interactive=True), gr.update(interactive=False) def get_list_projects(): project_list = [] for folder in os.listdir("data"): path_folder = os.path.join("data", folder) if not os.path.isdir(path_folder): continue folder = folder.lower() if folder == "emilia_zh_en_pinyin": continue project_list.append(folder) projects_selelect = None if not project_list else project_list[-1] return project_list, projects_selelect def create_data_project(name, tokenizer_type): name += "_" + tokenizer_type os.makedirs(os.path.join(path_data, name), exist_ok=True) os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True) project_list, projects_selelect = get_list_projects() return gr.update(choices=project_list, value=name) def transcribe(file_audio, language="english"): global pipe if pipe is None: pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16, device=device, ) text_transcribe = pipe( file_audio, chunk_length_s=30, batch_size=128, generate_kwargs={"task": "transcribe", "language": language}, return_timestamps=False, )["text"].strip() return text_transcribe def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()): path_project = os.path.join(path_data, name_project) path_dataset = os.path.join(path_project, "dataset") path_project_wavs = os.path.join(path_project, "wavs") file_metadata = os.path.join(path_project, "metadata.csv") if not user: if audio_files is None: return "You need to load an audio file." if os.path.isdir(path_project_wavs): shutil.rmtree(path_project_wavs) if os.path.isfile(file_metadata): os.remove(file_metadata) os.makedirs(path_project_wavs, exist_ok=True) if user: file_audios = [ file for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac") for file in glob(os.path.join(path_dataset, format)) ] if file_audios == []: return "No audio file was found in the dataset." else: file_audios = audio_files alpha = 0.5 _max = 1.0 slicer = Slicer(24000) num = 0 error_num = 0 data = "" for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))): audio, _ = librosa.load(file_audio, sr=24000, mono=True) list_slicer = slicer.slice(audio) for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"): name_segment = os.path.join(f"segment_{num}") file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav") tmp_max = np.abs(chunk).max() if tmp_max > 1: chunk /= tmp_max chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16)) try: text = transcribe(file_segment, language) text = text.lower().strip().replace('"', "") data += f"{name_segment}|{text}\n" num += 1 except: # noqa: E722 error_num += 1 with open(file_metadata, "w", encoding="utf-8-sig") as f: f.write(data) if error_num != []: error_text = f"\nerror files : {error_num}" else: error_text = "" return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}" def format_seconds_to_hms(seconds): hours = int(seconds / 3600) minutes = int((seconds % 3600) / 60) seconds = seconds % 60 return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds)) def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()): path_project = os.path.join(path_data, name_project) path_project_wavs = os.path.join(path_project, "wavs") file_metadata = os.path.join(path_project, "metadata.csv") file_raw = os.path.join(path_project, "raw.arrow") file_duration = os.path.join(path_project, "duration.json") file_vocab = os.path.join(path_project, "vocab.txt") if not os.path.isfile(file_metadata): return "The file was not found in " + file_metadata, "" with open(file_metadata, "r", encoding="utf-8-sig") as f: data = f.read() audio_path_list = [] text_list = [] duration_list = [] count = data.split("\n") lenght = 0 result = [] error_files = [] text_vocab_set = set() for line in progress.tqdm(data.split("\n"), total=count): sp_line = line.split("|") if len(sp_line) != 2: continue name_audio, text = sp_line[:2] file_audio = os.path.join(path_project_wavs, name_audio + ".wav") if not os.path.isfile(file_audio): error_files.append([file_audio, "error path"]) continue try: duration = get_audio_duration(file_audio) except Exception as e: error_files.append([file_audio, "duration"]) print(f"Error processing {file_audio}: {e}") continue if duration < 1 and duration > 25: error_files.append([file_audio, "duration < 1 and > 25 "]) continue if len(text) < 4: error_files.append([file_audio, "very small text len 3"]) continue text = clear_text(text) text = convert_char_to_pinyin([text], polyphone=True)[0] audio_path_list.append(file_audio) duration_list.append(duration) text_list.append(text) result.append({"audio_path": file_audio, "text": text, "duration": duration}) if ch_tokenizer: text_vocab_set.update(list(text)) lenght += duration if duration_list == []: return f"Error: No audio files found in the specified path : {path_project_wavs}", "" min_second = round(min(duration_list), 2) max_second = round(max(duration_list), 2) with ArrowWriter(path=file_raw, writer_batch_size=1) as writer: for line in progress.tqdm(result, total=len(result), desc="prepare data"): writer.write(line) with open(file_duration, "w") as f: json.dump({"duration": duration_list}, f, ensure_ascii=False) new_vocal = "" if not ch_tokenizer: file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt" if not os.path.isfile(file_vocab_finetune): return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!" shutil.copy2(file_vocab_finetune, file_vocab) with open(file_vocab, "r", encoding="utf-8-sig") as f: vocab_char_map = {} for i, char in enumerate(f): vocab_char_map[char[:-1]] = i vocab_size = len(vocab_char_map) else: with open(file_vocab, "w", encoding="utf-8-sig") as f: for vocab in sorted(text_vocab_set): f.write(vocab + "\n") new_vocal += vocab + "\n" vocab_size = len(text_vocab_set) if error_files != []: error_text = "\n".join([" = ".join(item) for item in error_files]) else: error_text = "" return ( f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\nvocab : {vocab_size}\n{error_text}", new_vocal, ) def check_user(value): return gr.update(visible=not value), gr.update(visible=value) def calculate_train( name_project, batch_size_type, max_samples, learning_rate, num_warmup_updates, save_per_updates, last_per_steps, finetune, ): path_project = os.path.join(path_data, name_project) file_duraction = os.path.join(path_project, "duration.json") if not os.path.isfile(file_duraction): return ( 1000, max_samples, num_warmup_updates, save_per_updates, last_per_steps, "project not found !", learning_rate, ) with open(file_duraction, "r") as file: data = json.load(file) duration_list = data["duration"] samples = len(duration_list) hours = sum(duration_list) / 3600 # if torch.cuda.is_available(): # gpu_properties = torch.cuda.get_device_properties(0) # total_memory = gpu_properties.total_memory / (1024**3) # elif torch.backends.mps.is_available(): # total_memory = psutil.virtual_memory().available / (1024**3) if torch.cuda.is_available(): gpu_count = torch.cuda.device_count() total_memory = 0 for i in range(gpu_count): gpu_properties = torch.cuda.get_device_properties(i) total_memory += gpu_properties.total_memory / (1024**3) # in GB elif torch.backends.mps.is_available(): gpu_count = 1 total_memory = psutil.virtual_memory().available / (1024**3) if batch_size_type == "frame": batch = int(total_memory * 0.5) batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch) batch_size_per_gpu = int(38400 / batch) else: batch_size_per_gpu = int(total_memory / 8) batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu) batch = batch_size_per_gpu if batch_size_per_gpu <= 0: batch_size_per_gpu = 1 if samples < 64: max_samples = int(samples * 0.25) else: max_samples = 64 num_warmup_updates = int(samples * 0.05) save_per_updates = int(samples * 0.10) last_per_steps = int(save_per_updates * 5) max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples) num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates) save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates) last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps) total_hours = hours mel_hop_length = 256 mel_sampling_rate = 24000 # target wanted_max_updates = 1000000 # train params gpus = gpu_count frames_per_gpu = batch_size_per_gpu # 8 * 38400 = 307200 grad_accum = 1 # intermediate mini_batch_frames = frames_per_gpu * grad_accum * gpus mini_batch_hours = mini_batch_frames * mel_hop_length / mel_sampling_rate / 3600 updates_per_epoch = total_hours / mini_batch_hours # steps_per_epoch = updates_per_epoch * grad_accum epochs = wanted_max_updates / updates_per_epoch if finetune: learning_rate = 1e-5 else: learning_rate = 7.5e-5 return ( batch_size_per_gpu, max_samples, num_warmup_updates, save_per_updates, last_per_steps, samples, learning_rate, int(epochs), ) def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str, safetensors: bool) -> str: try: checkpoint = torch.load(checkpoint_path) print("Original Checkpoint Keys:", checkpoint.keys()) ema_model_state_dict = checkpoint.get("ema_model_state_dict", None) if ema_model_state_dict is None: return "No 'ema_model_state_dict' found in the checkpoint." if safetensors: new_checkpoint_path = new_checkpoint_path.replace(".pt", ".safetensors") save_file(ema_model_state_dict, new_checkpoint_path) else: new_checkpoint_path = new_checkpoint_path.replace(".safetensors", ".pt") new_checkpoint = {"ema_model_state_dict": ema_model_state_dict} torch.save(new_checkpoint, new_checkpoint_path) return f"New checkpoint saved at: {new_checkpoint_path}" except Exception as e: return f"An error occurred: {e}" def vocab_check(project_name): name_project = project_name path_project = os.path.join(path_data, name_project) file_metadata = os.path.join(path_project, "metadata.csv") file_vocab = "data/Emilia_ZH_EN_pinyin/vocab.txt" if not os.path.isfile(file_vocab): return f"the file {file_vocab} not found !" with open(file_vocab, "r", encoding="utf-8-sig") as f: data = f.read() vocab = data.split("\n") vocab = set(vocab) if not os.path.isfile(file_metadata): return f"the file {file_metadata} not found !" with open(file_metadata, "r", encoding="utf-8-sig") as f: data = f.read() miss_symbols = [] miss_symbols_keep = {} for item in data.split("\n"): sp = item.split("|") if len(sp) != 2: continue text = sp[1].lower().strip() for t in text: if t not in vocab and t not in miss_symbols_keep: miss_symbols.append(t) miss_symbols_keep[t] = t if miss_symbols == []: info = "You can train using your language !" else: info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols) return info def get_random_sample_prepare(project_name): name_project = project_name path_project = os.path.join(path_data, name_project) file_arrow = os.path.join(path_project, "raw.arrow") if not os.path.isfile(file_arrow): return "", None dataset = Dataset_.from_file(file_arrow) random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0]) text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]" audio_path = random_sample["audio_path"][0] return text, audio_path def get_random_sample_transcribe(project_name): name_project = project_name path_project = os.path.join(path_data, name_project) file_metadata = os.path.join(path_project, "metadata.csv") if not os.path.isfile(file_metadata): return "", None data = "" with open(file_metadata, "r", encoding="utf-8-sig") as f: data = f.read() list_data = [] for item in data.split("\n"): sp = item.split("|") if len(sp) != 2: continue list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]]) if list_data == []: return "", None random_item = random.choice(list_data) return random_item[1], random_item[0] def get_random_sample_infer(project_name): text, audio = get_random_sample_transcribe(project_name) return ( text, text, audio, ) def infer(file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step): global last_checkpoint, last_device, tts_api if not os.path.isfile(file_checkpoint): return None, "checkpoint not found!" if training_process is not None: device_test = "cpu" else: device_test = None if last_checkpoint != file_checkpoint or last_device != device_test: if last_checkpoint != file_checkpoint: last_checkpoint = file_checkpoint if last_device != device_test: last_device = device_test tts_api = F5TTS(model_type=exp_name, ckpt_file=file_checkpoint, device=device_test) print("update", device_test, file_checkpoint) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name) return f.name, tts_api.device def check_finetune(finetune): return gr.update(interactive=finetune), gr.update(interactive=finetune), gr.update(interactive=finetune) def get_checkpoints_project(project_name, is_gradio=True): if project_name is None: return [], "" project_name = project_name.replace("_pinyin", "").replace("_char", "") path_project_ckpts = os.path.join("ckpts", project_name) if os.path.isdir(path_project_ckpts): files_checkpoints = glob(os.path.join(path_project_ckpts, "*.pt")) files_checkpoints = sorted( files_checkpoints, key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0]) if os.path.basename(x) != "model_last.pt" else float("inf"), ) else: files_checkpoints = [] selelect_checkpoint = None if not files_checkpoints else files_checkpoints[0] if is_gradio: return gr.update(choices=files_checkpoints, value=selelect_checkpoint) return files_checkpoints, selelect_checkpoint def get_gpu_stats(): gpu_stats = "" if torch.cuda.is_available(): gpu_count = torch.cuda.device_count() for i in range(gpu_count): gpu_name = torch.cuda.get_device_name(i) gpu_properties = torch.cuda.get_device_properties(i) total_memory = gpu_properties.total_memory / (1024**3) # in GB allocated_memory = torch.cuda.memory_allocated(i) / (1024**2) # in MB reserved_memory = torch.cuda.memory_reserved(i) / (1024**2) # in MB gpu_stats += ( f"GPU {i} Name: {gpu_name}\n" f"Total GPU memory (GPU {i}): {total_memory:.2f} GB\n" f"Allocated GPU memory (GPU {i}): {allocated_memory:.2f} MB\n" f"Reserved GPU memory (GPU {i}): {reserved_memory:.2f} MB\n\n" ) elif torch.backends.mps.is_available(): gpu_count = 1 gpu_stats += "MPS GPU\n" total_memory = psutil.virtual_memory().total / ( 1024**3 ) # Total system memory (MPS doesn't have its own memory) allocated_memory = 0 reserved_memory = 0 gpu_stats += ( f"Total system memory: {total_memory:.2f} GB\n" f"Allocated GPU memory (MPS): {allocated_memory:.2f} MB\n" f"Reserved GPU memory (MPS): {reserved_memory:.2f} MB\n" ) else: gpu_stats = "No GPU available" return gpu_stats def get_cpu_stats(): cpu_usage = psutil.cpu_percent(interval=1) memory_info = psutil.virtual_memory() memory_used = memory_info.used / (1024**2) memory_total = memory_info.total / (1024**2) memory_percent = memory_info.percent pid = os.getpid() process = psutil.Process(pid) nice_value = process.nice() cpu_stats = ( f"CPU Usage: {cpu_usage:.2f}%\n" f"System Memory: {memory_used:.2f} MB used / {memory_total:.2f} MB total ({memory_percent}% used)\n" f"Process Priority (Nice value): {nice_value}" ) return cpu_stats def get_combined_stats(): gpu_stats = get_gpu_stats() cpu_stats = get_cpu_stats() combined_stats = f"### GPU Stats\n{gpu_stats}\n\n### CPU Stats\n{cpu_stats}" return combined_stats with gr.Blocks() as app: gr.Markdown( """ # E2/F5 TTS AUTOMATIC FINETUNE This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models: * [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching) * [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS) The checkpoints support English and Chinese. for tutorial and updates check here (https://github.com/SWivid/F5-TTS/discussions/143) """ ) with gr.Row(): projects, projects_selelect = get_list_projects() tokenizer_type = gr.Radio(label="Tokenizer Type", choices=["pinyin", "char"], value="pinyin") project_name = gr.Textbox(label="project name", value="my_speak") bt_create = gr.Button("create new project") cm_project = gr.Dropdown(choices=projects, value=projects_selelect, label="Project", allow_custom_value=True) bt_create.click(fn=create_data_project, inputs=[project_name, tokenizer_type], outputs=[cm_project]) with gr.Tabs(): with gr.TabItem("transcribe Data"): ch_manual = gr.Checkbox(label="audio from path", value=False) mark_info_transcribe = gr.Markdown( """```plaintext Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory. my_speak/ │ └── dataset/ ├── audio1.wav └── audio2.wav ... ```""", visible=False, ) audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple") txt_lang = gr.Text(label="Language", value="english") bt_transcribe = bt_create = gr.Button("transcribe") txt_info_transcribe = gr.Text(label="info", value="") bt_transcribe.click( fn=transcribe_all, inputs=[cm_project, audio_speaker, txt_lang, ch_manual], outputs=[txt_info_transcribe], ) ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe]) random_sample_transcribe = gr.Button("random sample") with gr.Row(): random_text_transcribe = gr.Text(label="Text") random_audio_transcribe = gr.Audio(label="Audio", type="filepath") random_sample_transcribe.click( fn=get_random_sample_transcribe, inputs=[cm_project], outputs=[random_text_transcribe, random_audio_transcribe], ) with gr.TabItem("prepare Data"): gr.Markdown( """```plaintext place all your wavs folder and your metadata.csv file in {your name project} my_speak/ │ ├── wavs/ │ ├── audio1.wav │ └── audio2.wav | ... │ └── metadata.csv file format metadata.csv audio1|text1 audio2|text1 ... ```""" ) ch_tokenizern = gr.Checkbox(label="create vocabulary from dataset", value=False) bt_prepare = bt_create = gr.Button("prepare") txt_info_prepare = gr.Text(label="info", value="") txt_vocab_prepare = gr.Text(label="vocab", value="") bt_prepare.click( fn=create_metadata, inputs=[cm_project, ch_tokenizern], outputs=[txt_info_prepare, txt_vocab_prepare] ) random_sample_prepare = gr.Button("random sample") with gr.Row(): random_text_prepare = gr.Text(label="Pinyin") random_audio_prepare = gr.Audio(label="Audio", type="filepath") random_sample_prepare.click( fn=get_random_sample_prepare, inputs=[cm_project], outputs=[random_text_prepare, random_audio_prepare] ) with gr.TabItem("train Data"): with gr.Row(): bt_calculate = bt_create = gr.Button("Auto Settings") lb_samples = gr.Label(label="samples") batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame") with gr.Row(): ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True) tokenizer_file = gr.Textbox(label="Tokenizer File", value="") file_checkpoint_train = gr.Textbox(label="Pretrain Model", value="") with gr.Row(): exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base") learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5) with gr.Row(): batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000) max_samples = gr.Number(label="Max Samples", value=64) with gr.Row(): grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1) max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0) with gr.Row(): epochs = gr.Number(label="Epochs", value=10) num_warmup_updates = gr.Number(label="Warmup Updates", value=5) with gr.Row(): save_per_updates = gr.Number(label="Save per Updates", value=10) last_per_steps = gr.Number(label="Last per Steps", value=50) with gr.Row(): mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none") start_button = gr.Button("Start Training") stop_button = gr.Button("Stop Training", interactive=False) txt_info_train = gr.Text(label="info", value="") start_button.click( fn=start_training, inputs=[ cm_project, exp_name, learning_rate, batch_size_per_gpu, batch_size_type, max_samples, grad_accumulation_steps, max_grad_norm, epochs, num_warmup_updates, save_per_updates, last_per_steps, ch_finetune, file_checkpoint_train, tokenizer_type, tokenizer_file, mixed_precision, ], outputs=[txt_info_train, start_button, stop_button], ) stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button]) bt_calculate.click( fn=calculate_train, inputs=[ cm_project, batch_size_type, max_samples, learning_rate, num_warmup_updates, save_per_updates, last_per_steps, ch_finetune, ], outputs=[ batch_size_per_gpu, max_samples, num_warmup_updates, save_per_updates, last_per_steps, lb_samples, learning_rate, epochs, ], ) ch_finetune.change( check_finetune, inputs=[ch_finetune], outputs=[file_checkpoint_train, tokenizer_file, tokenizer_type] ) with gr.TabItem("reduse checkpoint"): txt_path_checkpoint = gr.Text(label="path checkpoint :") txt_path_checkpoint_small = gr.Text(label="path output :") ch_safetensors = gr.Checkbox(label="safetensors", value="") txt_info_reduse = gr.Text(label="info", value="") reduse_button = gr.Button("reduse") reduse_button.click( fn=extract_and_save_ema_model, inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_safetensors], outputs=[txt_info_reduse], ) with gr.TabItem("vocab check"): check_button = gr.Button("check vocab") txt_info_check = gr.Text(label="info", value="") check_button.click(fn=vocab_check, inputs=[cm_project], outputs=[txt_info_check]) with gr.TabItem("test model"): exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS") list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False) nfe_step = gr.Number(label="n_step", value=32) with gr.Row(): cm_checkpoint = gr.Dropdown( choices=list_checkpoints, value=checkpoint_select, label="checkpoints", allow_custom_value=True ) bt_checkpoint_refresh = gr.Button("refresh") random_sample_infer = gr.Button("random sample") ref_text = gr.Textbox(label="ref text") ref_audio = gr.Audio(label="audio ref", type="filepath") gen_text = gr.Textbox(label="gen text") random_sample_infer.click( fn=get_random_sample_infer, inputs=[cm_project], outputs=[ref_text, gen_text, ref_audio] ) with gr.Row(): txt_info_gpu = gr.Textbox("", label="device") check_button_infer = gr.Button("infer") gen_audio = gr.Audio(label="audio gen", type="filepath") check_button_infer.click( fn=infer, inputs=[cm_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step], outputs=[gen_audio, txt_info_gpu], ) bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint]) cm_project.change(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint]) with gr.TabItem("system info"): output_box = gr.Textbox(label="GPU and CPU Information", lines=20) def update_stats(): return get_combined_stats() update_button = gr.Button("Update Stats") update_button.click(fn=update_stats, outputs=output_box) def auto_update(): yield gr.update(value=update_stats()) gr.update(fn=auto_update, inputs=[], outputs=output_box) @click.command() @click.option("--port", "-p", default=None, type=int, help="Port to run the app on") @click.option("--host", "-H", default=None, help="Host to run the app on") @click.option( "--share", "-s", default=False, is_flag=True, help="Share the app via Gradio share link", ) @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access") def main(port, host, share, api): global app print("Starting app...") app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api) if __name__ == "__main__": main()