import argparse from model import CFM, UNetT, DiT, MMDiT, Trainer from model.utils import get_tokenizer from model.dataset import load_dataset from cached_path import cached_path import shutil,os # -------------------------- Dataset Settings --------------------------- # target_sample_rate = 24000 n_mel_channels = 100 hop_length = 256 tokenizer = "pinyin" # 'pinyin', 'char', or 'custom' tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) # -------------------------- Argument Parsing --------------------------- # def parse_args(): parser = argparse.ArgumentParser(description='Train CFM Model') parser.add_argument('--exp_name', type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"],help='Experiment name') parser.add_argument('--dataset_name', type=str, default="Emilia_ZH_EN", help='Name of the dataset to use') parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate for training') parser.add_argument('--batch_size_per_gpu', type=int, default=256, help='Batch size per GPU') parser.add_argument('--batch_size_type', type=str, default="frame", choices=["frame", "sample"],help='Batch size type') parser.add_argument('--max_samples', type=int, default=16, help='Max sequences per batch') parser.add_argument('--grad_accumulation_steps', type=int, default=1,help='Gradient accumulation steps') parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping') parser.add_argument('--epochs', type=int, default=10, help='Number of training epochs') parser.add_argument('--num_warmup_updates', type=int, default=5, help='Warmup steps') parser.add_argument('--save_per_updates', type=int, default=10, help='Save checkpoint every X steps') parser.add_argument('--last_per_steps', type=int, default=10, help='Save last checkpoint every X steps') parser.add_argument('--finetune', type=bool, default=True, help='Use Finetune') return parser.parse_args() # -------------------------- Training Settings -------------------------- # def main(): args = parse_args() # Model parameters based on experiment name if args.exp_name == "F5TTS_Base": wandb_resume_id = None model_cls = DiT model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) if args.finetune: ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt")) elif args.exp_name == "E2TTS_Base": wandb_resume_id = None model_cls = UNetT model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) if args.finetune: ckpt_path = str(cached_path(f"hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt")) if args.finetune: path_ckpt = os.path.join("ckpts",args.dataset_name) if os.path.isdir(path_ckpt)==False: os.makedirs(path_ckpt,exist_ok=True) shutil.copy2(ckpt_path,os.path.join(path_ckpt,os.path.basename(ckpt_path))) checkpoint_path=os.path.join("ckpts",args.dataset_name) # Use the dataset_name provided in the command line tokenizer_path = args.dataset_name if tokenizer != "custom" else tokenizer_path vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) mel_spec_kwargs = dict( target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length, ) e2tts = CFM( transformer=model_cls( **model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels ), mel_spec_kwargs=mel_spec_kwargs, vocab_char_map=vocab_char_map, ) trainer = Trainer( e2tts, args.epochs, args.learning_rate, num_warmup_updates=args.num_warmup_updates, save_per_updates=args.save_per_updates, checkpoint_path=checkpoint_path, batch_size=args.batch_size_per_gpu, batch_size_type=args.batch_size_type, max_samples=args.max_samples, grad_accumulation_steps=args.grad_accumulation_steps, max_grad_norm=args.max_grad_norm, wandb_project="CFM-TTS", wandb_run_name=args.exp_name, wandb_resume_id=wandb_resume_id, last_per_steps=args.last_per_steps, ) train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) trainer.train(train_dataset, resumable_with_seed=666 # seed for shuffling dataset ) if __name__ == '__main__': main()