# training script. from importlib.resources import files from f5_tts.model import CFM, UNetT, DiT, Trainer from f5_tts.model.utils import get_tokenizer from f5_tts.model.dataset import load_dataset # -------------------------- Dataset Settings --------------------------- # target_sample_rate = 24000 n_mel_channels = 100 hop_length = 256 tokenizer = "pinyin" # 'pinyin', 'char', or 'custom' tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) dataset_name = "Emilia_ZH_EN" # -------------------------- Training Settings -------------------------- # exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base learning_rate = 7.5e-5 batch_size_per_gpu = 38400 # 8 GPUs, 8 * 38400 = 307200 batch_size_type = "frame" # "frame" or "sample" max_samples = 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models grad_accumulation_steps = 1 # note: updates = steps / grad_accumulation_steps max_grad_norm = 1.0 epochs = 11 # use linear decay, thus epochs control the slope num_warmup_updates = 20000 # warmup steps save_per_updates = 50000 # save checkpoint per steps last_per_steps = 5000 # save last checkpoint per steps # model params if exp_name == "F5TTS_Base": wandb_resume_id = None model_cls = DiT model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) elif exp_name == "E2TTS_Base": wandb_resume_id = None model_cls = UNetT model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) # ----------------------------------------------------------------------- # def main(): if tokenizer == "custom": tokenizer_path = tokenizer_path else: tokenizer_path = dataset_name vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) mel_spec_kwargs = dict( target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length, ) model = CFM( transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), mel_spec_kwargs=mel_spec_kwargs, vocab_char_map=vocab_char_map, ) trainer = Trainer( model, epochs, learning_rate, num_warmup_updates=num_warmup_updates, save_per_updates=save_per_updates, checkpoint_path=str(files("f5_tts").joinpath(f"../../ckpts/{exp_name}")), batch_size=batch_size_per_gpu, batch_size_type=batch_size_type, max_samples=max_samples, grad_accumulation_steps=grad_accumulation_steps, max_grad_norm=max_grad_norm, wandb_project="CFM-TTS", wandb_run_name=exp_name, wandb_resume_id=wandb_resume_id, last_per_steps=last_per_steps, log_samples=True, ) train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) trainer.train( train_dataset, resumable_with_seed=666, # seed for shuffling dataset ) if __name__ == "__main__": main()