from __future__ import annotations import os import random from collections import defaultdict from importlib.resources import files import torch from torch.nn.utils.rnn import pad_sequence import jieba from pypinyin import lazy_pinyin, Style # seed everything def seed_everything(seed=0): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # helpers def exists(v): return v is not None def default(v, d): return v if exists(v) else d # tensor helpers def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821 if not exists(length): length = t.amax() seq = torch.arange(length, device=t.device) return seq[None, :] < t[:, None] def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821 max_seq_len = seq_len.max().item() seq = torch.arange(max_seq_len, device=start.device).long() start_mask = seq[None, :] >= start[:, None] end_mask = seq[None, :] < end[:, None] return start_mask & end_mask def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821 lengths = (frac_lengths * seq_len).long() max_start = seq_len - lengths rand = torch.rand_like(frac_lengths) start = (max_start * rand).long().clamp(min=0) end = start + lengths return mask_from_start_end_indices(seq_len, start, end) def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722 if not exists(mask): return t.mean(dim=1) t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device)) num = t.sum(dim=1) den = mask.float().sum(dim=1) return num / den.clamp(min=1.0) # simple utf-8 tokenizer, since paper went character based def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722 list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True) return text # char tokenizer, based on custom dataset's extracted .txt file def list_str_to_idx( text: list[str] | list[list[str]], vocab_char_map: dict[str, int], # {char: idx} padding_value=-1, ) -> int["b nt"]: # noqa: F722 list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True) return text # Get tokenizer def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): """ tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file - "char" for char-wise tokenizer, need .txt vocab_file - "byte" for utf-8 tokenizer - "custom" if you're directly passing in a path to the vocab.txt you want to use vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols - if use "char", derived from unfiltered character & symbol counts of custom dataset - if use "byte", set to 256 (unicode byte range) """ if tokenizer in ["pinyin", "char"]: tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt") with open(tokenizer_path, "r", encoding="utf-8") as f: vocab_char_map = {} for i, char in enumerate(f): vocab_char_map[char[:-1]] = i vocab_size = len(vocab_char_map) assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" elif tokenizer == "byte": vocab_char_map = None vocab_size = 256 elif tokenizer == "custom": with open(dataset_name, "r", encoding="utf-8") as f: vocab_char_map = {} for i, char in enumerate(f): vocab_char_map[char[:-1]] = i vocab_size = len(vocab_char_map) return vocab_char_map, vocab_size # convert char to pinyin def convert_char_to_pinyin(text_list, polyphone=True): final_text_list = [] god_knows_why_en_testset_contains_zh_quote = str.maketrans( {"“": '"', "”": '"', "‘": "'", "’": "'"} ) # in case librispeech (orig no-pc) test-clean custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov for text in text_list: char_list = [] text = text.translate(god_knows_why_en_testset_contains_zh_quote) text = text.translate(custom_trans) for seg in jieba.cut(text): seg_byte_len = len(bytes(seg, "UTF-8")) if seg_byte_len == len(seg): # if pure alphabets and symbols if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": char_list.append(" ") char_list.extend(seg) elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) for c in seg: if c not in "。,、;:?!《》【】—…": char_list.append(" ") char_list.append(c) else: # if mixed chinese characters, alphabets and symbols for c in seg: if ord(c) < 256: char_list.extend(c) else: if c not in "。,、;:?!《》【】—…": char_list.append(" ") char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)) else: # if is zh punc char_list.append(c) final_text_list.append(char_list) return final_text_list # filter func for dirty data with many repetitions def repetition_found(text, length=2, tolerance=10): pattern_count = defaultdict(int) for i in range(len(text) - length + 1): pattern = text[i : i + length] pattern_count[pattern] += 1 for pattern, count in pattern_count.items(): if count > tolerance: return True return False