""" ein notation: b - batch n - sequence nt - text sequence nw - raw wave length d - dimension """ from __future__ import annotations import torch from torch import nn from x_transformers.x_transformers import RotaryEmbedding from f5_tts.model.modules import ( TimestepEmbedding, ConvPositionEmbedding, MMDiTBlock, AdaLayerNormZero_Final, precompute_freqs_cis, get_pos_embed_indices, ) # text embedding class TextEmbedding(nn.Module): def __init__(self, out_dim, text_num_embeds): super().__init__() self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token self.precompute_max_pos = 1024 self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False) def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: # noqa: F722 text = text + 1 if drop_text: text = torch.zeros_like(text) text = self.text_embed(text) # sinus pos emb batch_start = torch.zeros((text.shape[0],), dtype=torch.long) batch_text_len = text.shape[1] pos_idx = get_pos_embed_indices(batch_start, batch_text_len, max_pos=self.precompute_max_pos) text_pos_embed = self.freqs_cis[pos_idx] text = text + text_pos_embed return text # noised input & masked cond audio embedding class AudioEmbedding(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.linear = nn.Linear(2 * in_dim, out_dim) self.conv_pos_embed = ConvPositionEmbedding(out_dim) def forward(self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False): # noqa: F722 if drop_audio_cond: cond = torch.zeros_like(cond) x = torch.cat((x, cond), dim=-1) x = self.linear(x) x = self.conv_pos_embed(x) + x return x # Transformer backbone using MM-DiT blocks class MMDiT(nn.Module): def __init__( self, *, dim, depth=8, heads=8, dim_head=64, dropout=0.1, ff_mult=4, text_num_embeds=256, mel_dim=100, ): super().__init__() self.time_embed = TimestepEmbedding(dim) self.text_embed = TextEmbedding(dim, text_num_embeds) self.audio_embed = AudioEmbedding(mel_dim, dim) self.rotary_embed = RotaryEmbedding(dim_head) self.dim = dim self.depth = depth self.transformer_blocks = nn.ModuleList( [ MMDiTBlock( dim=dim, heads=heads, dim_head=dim_head, dropout=dropout, ff_mult=ff_mult, context_pre_only=i == depth - 1, ) for i in range(depth) ] ) self.norm_out = AdaLayerNormZero_Final(dim) # final modulation self.proj_out = nn.Linear(dim, mel_dim) def forward( self, x: float["b n d"], # nosied input audio # noqa: F722 cond: float["b n d"], # masked cond audio # noqa: F722 text: int["b nt"], # text # noqa: F722 time: float["b"] | float[""], # time step # noqa: F821 F722 drop_audio_cond, # cfg for cond audio drop_text, # cfg for text mask: bool["b n"] | None = None, # noqa: F722 ): batch = x.shape[0] if time.ndim == 0: time = time.repeat(batch) # t: conditioning (time), c: context (text + masked cond audio), x: noised input audio t = self.time_embed(time) c = self.text_embed(text, drop_text=drop_text) x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond) seq_len = x.shape[1] text_len = text.shape[1] rope_audio = self.rotary_embed.forward_from_seq_len(seq_len) rope_text = self.rotary_embed.forward_from_seq_len(text_len) for block in self.transformer_blocks: c, x = block(x, c, t, mask=mask, rope=rope_audio, c_rope=rope_text) x = self.norm_out(x, t) output = self.proj_out(x) return output