""" ein notation: b - batch n - sequence nt - text sequence nw - raw wave length d - dimension """ from __future__ import annotations from typing import Literal import torch from torch import nn import torch.nn.functional as F from x_transformers import RMSNorm from x_transformers.x_transformers import RotaryEmbedding from model.modules import ( TimestepEmbedding, ConvNeXtV2Block, ConvPositionEmbedding, Attention, AttnProcessor, FeedForward, precompute_freqs_cis, get_pos_embed_indices, ) # Text embedding class TextEmbedding(nn.Module): def __init__(self, text_num_embeds, text_dim, conv_layers = 0, conv_mult = 2): super().__init__() self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token if conv_layers > 0: self.extra_modeling = True self.precompute_max_pos = 4096 # ~44s of 24khz audio self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]) else: self.extra_modeling = False def forward(self, text: int['b nt'], seq_len, drop_text = False): batch, text_len = text.shape[0], text.shape[1] text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens text = F.pad(text, (0, seq_len - text_len), value = 0) if drop_text: # cfg for text text = torch.zeros_like(text) text = self.text_embed(text) # b n -> b n d # possible extra modeling if self.extra_modeling: # sinus pos emb batch_start = torch.zeros((batch,), dtype=torch.long) pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) text_pos_embed = self.freqs_cis[pos_idx] text = text + text_pos_embed # convnextv2 blocks text = self.text_blocks(text) return text # noised input audio and context mixing embedding class InputEmbedding(nn.Module): def __init__(self, mel_dim, text_dim, out_dim): super().__init__() self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim) self.conv_pos_embed = ConvPositionEmbedding(dim = out_dim) def forward(self, x: float['b n d'], cond: float['b n d'], text_embed: float['b n d'], drop_audio_cond = False): if drop_audio_cond: # cfg for cond audio cond = torch.zeros_like(cond) x = self.proj(torch.cat((x, cond, text_embed), dim = -1)) x = self.conv_pos_embed(x) + x return x # Flat UNet Transformer backbone class UNetT(nn.Module): def __init__(self, *, dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4, mel_dim = 100, text_num_embeds = 256, text_dim = None, conv_layers = 0, skip_connect_type: Literal['add', 'concat', 'none'] = 'concat', ): super().__init__() assert depth % 2 == 0, "UNet-Transformer's depth should be even." self.time_embed = TimestepEmbedding(dim) if text_dim is None: text_dim = mel_dim self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers = conv_layers) self.input_embed = InputEmbedding(mel_dim, text_dim, dim) self.rotary_embed = RotaryEmbedding(dim_head) # transformer layers & skip connections self.dim = dim self.skip_connect_type = skip_connect_type needs_skip_proj = skip_connect_type == 'concat' self.depth = depth self.layers = nn.ModuleList([]) for idx in range(depth): is_later_half = idx >= (depth // 2) attn_norm = RMSNorm(dim) attn = Attention( processor = AttnProcessor(), dim = dim, heads = heads, dim_head = dim_head, dropout = dropout, ) ff_norm = RMSNorm(dim) ff = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh") skip_proj = nn.Linear(dim * 2, dim, bias = False) if needs_skip_proj and is_later_half else None self.layers.append(nn.ModuleList([ skip_proj, attn_norm, attn, ff_norm, ff, ])) self.norm_out = RMSNorm(dim) self.proj_out = nn.Linear(dim, mel_dim) def forward( self, x: float['b n d'], # nosied input audio cond: float['b n d'], # masked cond audio text: int['b nt'], # text time: float['b'] | float[''], # time step drop_audio_cond, # cfg for cond audio drop_text, # cfg for text mask: bool['b n'] | None = None, ): batch, seq_len = x.shape[0], x.shape[1] if time.ndim == 0: time = time.repeat(batch) # t: conditioning time, c: context (text + masked cond audio), x: noised input audio t = self.time_embed(time) text_embed = self.text_embed(text, seq_len, drop_text = drop_text) x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond) # postfix time t to input x, [b n d] -> [b n+1 d] x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x if mask is not None: mask = F.pad(mask, (1, 0), value=1) rope = self.rotary_embed.forward_from_seq_len(seq_len + 1) # flat unet transformer skip_connect_type = self.skip_connect_type skips = [] for idx, (maybe_skip_proj, attn_norm, attn, ff_norm, ff) in enumerate(self.layers): layer = idx + 1 # skip connection logic is_first_half = layer <= (self.depth // 2) is_later_half = not is_first_half if is_first_half: skips.append(x) if is_later_half: skip = skips.pop() if skip_connect_type == 'concat': x = torch.cat((x, skip), dim = -1) x = maybe_skip_proj(x) elif skip_connect_type == 'add': x = x + skip # attention and feedforward blocks x = attn(attn_norm(x), rope = rope, mask = mask) + x x = ff(ff_norm(x)) + x assert len(skips) == 0 x = self.norm_out(x)[:, 1:, :] # unpack t from x return self.proj_out(x)