# generate audio text map for WenetSpeech4TTS # evaluate for vocab size import sys import os sys.path.append(os.getcwd()) import json from tqdm import tqdm from concurrent.futures import ProcessPoolExecutor import torchaudio from datasets import Dataset from model.utils import convert_char_to_pinyin def deal_with_sub_path_files(dataset_path, sub_path): print(f"Dealing with: {sub_path}") text_dir = os.path.join(dataset_path, sub_path, "txts") audio_dir = os.path.join(dataset_path, sub_path, "wavs") text_files = os.listdir(text_dir) audio_paths, texts, durations = [], [], [] for text_file in tqdm(text_files): with open(os.path.join(text_dir, text_file), "r", encoding="utf-8") as file: first_line = file.readline().split("\t") audio_nm = first_line[0] audio_path = os.path.join(audio_dir, audio_nm + ".wav") text = first_line[1].strip() audio_paths.append(audio_path) if tokenizer == "pinyin": texts.extend(convert_char_to_pinyin([text], polyphone=polyphone)) elif tokenizer == "char": texts.append(text) audio, sample_rate = torchaudio.load(audio_path) durations.append(audio.shape[-1] / sample_rate) return audio_paths, texts, durations def main(): assert tokenizer in ["pinyin", "char"] audio_path_list, text_list, duration_list = [], [], [] executor = ProcessPoolExecutor(max_workers=max_workers) futures = [] for dataset_path in dataset_paths: sub_items = os.listdir(dataset_path) sub_paths = [item for item in sub_items if os.path.isdir(os.path.join(dataset_path, item))] for sub_path in sub_paths: futures.append(executor.submit(deal_with_sub_path_files, dataset_path, sub_path)) for future in tqdm(futures, total=len(futures)): audio_paths, texts, durations = future.result() audio_path_list.extend(audio_paths) text_list.extend(texts) duration_list.extend(durations) executor.shutdown() if not os.path.exists("data"): os.makedirs("data") print(f"\nSaving to data/{dataset_name}_{tokenizer} ...") dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list}) dataset.save_to_disk(f"data/{dataset_name}_{tokenizer}/raw", max_shard_size="2GB") # arrow format with open(f"data/{dataset_name}_{tokenizer}/duration.json", "w", encoding="utf-8") as f: json.dump( {"duration": duration_list}, f, ensure_ascii=False ) # dup a json separately saving duration in case for DynamicBatchSampler ease print("\nEvaluating vocab size (all characters and symbols / all phonemes) ...") text_vocab_set = set() for text in tqdm(text_list): text_vocab_set.update(list(text)) # add alphabets and symbols (optional, if plan to ft on de/fr etc.) if tokenizer == "pinyin": text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)]) with open(f"data/{dataset_name}_{tokenizer}/vocab.txt", "w") as f: for vocab in sorted(text_vocab_set): f.write(vocab + "\n") print(f"\nFor {dataset_name}, sample count: {len(text_list)}") print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}\n") if __name__ == "__main__": max_workers = 32 tokenizer = "pinyin" # "pinyin" | "char" polyphone = True dataset_choice = 1 # 1: Premium, 2: Standard, 3: Basic dataset_name = ["WenetSpeech4TTS_Premium", "WenetSpeech4TTS_Standard", "WenetSpeech4TTS_Basic"][dataset_choice - 1] dataset_paths = [ "/WenetSpeech4TTS/Basic", "/WenetSpeech4TTS/Standard", "/WenetSpeech4TTS/Premium", ][-dataset_choice:] print(f"\nChoose Dataset: {dataset_name}\n") main() # Results (if adding alphabets with accents and symbols): # WenetSpeech4TTS Basic Standard Premium # samples count 3932473 1941220 407494 # pinyin vocab size 1349 1348 1344 (no polyphone) # - - 1459 (polyphone) # char vocab size 5264 5219 5042 # vocab size may be slightly different due to jieba tokenizer and pypinyin (e.g. way of polyphoneme) # please be careful if using pretrained model, make sure the vocab.txt is same