import sys import os sys.path.append(os.getcwd()) from pathlib import Path import json import shutil import argparse import csv import torchaudio from tqdm import tqdm from datasets.arrow_writer import ArrowWriter from model.utils import ( convert_char_to_pinyin, ) PRETRAINED_VOCAB_PATH = Path(__file__).parent.parent / "data/Emilia_ZH_EN_pinyin/vocab.txt" def is_csv_wavs_format(input_dataset_dir): fpath = Path(input_dataset_dir) metadata = fpath / "metadata.csv" wavs = fpath / "wavs" return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir() def prepare_csv_wavs_dir(input_dir): assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}" input_dir = Path(input_dir) metadata_path = input_dir / "metadata.csv" audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix()) sub_result, durations = [], [] vocab_set = set() polyphone = True for audio_path, text in audio_path_text_pairs: if not Path(audio_path).exists(): print(f"audio {audio_path} not found, skipping") continue audio_duration = get_audio_duration(audio_path) # assume tokenizer = "pinyin" ("pinyin" | "char") text = convert_char_to_pinyin([text], polyphone=polyphone)[0] sub_result.append({"audio_path": audio_path, "text": text, "duration": audio_duration}) durations.append(audio_duration) vocab_set.update(list(text)) return sub_result, durations, vocab_set def get_audio_duration(audio_path): audio, sample_rate = torchaudio.load(audio_path) num_channels = audio.shape[0] return audio.shape[1] / (sample_rate * num_channels) def read_audio_text_pairs(csv_file_path): audio_text_pairs = [] parent = Path(csv_file_path).parent with open(csv_file_path, mode="r", newline="", encoding="utf-8") as csvfile: reader = csv.reader(csvfile, delimiter="|") next(reader) # Skip the header row for row in reader: if len(row) >= 2: audio_file = row[0].strip() # First column: audio file path text = row[1].strip() # Second column: text audio_file_path = parent / audio_file audio_text_pairs.append((audio_file_path.as_posix(), text)) return audio_text_pairs def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune): out_dir = Path(out_dir) # save preprocessed dataset to disk out_dir.mkdir(exist_ok=True, parents=True) print(f"\nSaving to {out_dir} ...") # dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list}) # oom # dataset.save_to_disk(f"data/{dataset_name}/raw", max_shard_size="2GB") raw_arrow_path = out_dir / "raw.arrow" with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=1) as writer: for line in tqdm(result, desc="Writing to raw.arrow ..."): writer.write(line) # dup a json separately saving duration in case for DynamicBatchSampler ease dur_json_path = out_dir / "duration.json" with open(dur_json_path.as_posix(), "w", encoding="utf-8") as f: json.dump({"duration": duration_list}, f, ensure_ascii=False) # vocab map, i.e. tokenizer # add alphabets and symbols (optional, if plan to ft on de/fr etc.) # if tokenizer == "pinyin": # text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)]) voca_out_path = out_dir / "vocab.txt" with open(voca_out_path.as_posix(), "w") as f: for vocab in sorted(text_vocab_set): f.write(vocab + "\n") if is_finetune: file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix() shutil.copy2(file_vocab_finetune, voca_out_path) else: with open(voca_out_path, "w") as f: for vocab in sorted(text_vocab_set): f.write(vocab + "\n") dataset_name = out_dir.stem print(f"\nFor {dataset_name}, sample count: {len(result)}") print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours") def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True): if is_finetune: assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}" sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir) save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune) def cli(): # finetune: python scripts/prepare_csv_wavs.py /path/to/input_dir /path/to/output_dir_pinyin # pretrain: python scripts/prepare_csv_wavs.py /path/to/output_dir_pinyin --pretrain parser = argparse.ArgumentParser(description="Prepare and save dataset.") parser.add_argument("inp_dir", type=str, help="Input directory containing the data.") parser.add_argument("out_dir", type=str, help="Output directory to save the prepared data.") parser.add_argument("--pretrain", action="store_true", help="Enable for new pretrain, otherwise is a fine-tune") args = parser.parse_args() prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain) if __name__ == "__main__": cli()