Spaces:
Running
on
Zero
Running
on
Zero
mrfakename
commited on
Commit
•
ef90edf
1
Parent(s):
d9c8497
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
- README_REPO.md +21 -0
- model/trainer.py +24 -20
README_REPO.md
CHANGED
@@ -72,6 +72,27 @@ An initial guidance on Finetuning [#57](https://github.com/SWivid/F5-TTS/discuss
|
|
72 |
|
73 |
Gradio UI finetuning with `finetune_gradio.py` see [#143](https://github.com/SWivid/F5-TTS/discussions/143).
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
## Inference
|
76 |
|
77 |
The pretrained model checkpoints can be reached at [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS) and [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), or automatically downloaded with `inference-cli` and `gradio_app`.
|
|
|
72 |
|
73 |
Gradio UI finetuning with `finetune_gradio.py` see [#143](https://github.com/SWivid/F5-TTS/discussions/143).
|
74 |
|
75 |
+
## Wandb Logging
|
76 |
+
|
77 |
+
By default, the training script does NOT use logging (assuming you didn't manually log in using `wandb login`).
|
78 |
+
|
79 |
+
To turn on wandb logging, you can either:
|
80 |
+
|
81 |
+
1. Manually login with `wandb login`: Learn more [here](https://docs.wandb.ai/ref/cli/wandb-login)
|
82 |
+
2. Automatically login programmatically by setting an environment variable: Get an API KEY at https://wandb.ai/site/ and set the environment variable as follows:
|
83 |
+
|
84 |
+
On Mac & Linux:
|
85 |
+
|
86 |
+
```
|
87 |
+
export WANDB_API_KEY=<YOUR WANDB API KEY>
|
88 |
+
```
|
89 |
+
|
90 |
+
On Windows:
|
91 |
+
|
92 |
+
```
|
93 |
+
set WANDB_API_KEY=<YOUR WANDB API KEY>
|
94 |
+
```
|
95 |
+
|
96 |
## Inference
|
97 |
|
98 |
The pretrained model checkpoints can be reached at [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS) and [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), or automatically downloaded with `inference-cli` and `gradio_app`.
|
model/trainer.py
CHANGED
@@ -50,31 +50,35 @@ class Trainer:
|
|
50 |
|
51 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters = True)
|
52 |
|
|
|
|
|
|
|
53 |
self.accelerator = Accelerator(
|
54 |
-
log_with =
|
55 |
kwargs_handlers = [ddp_kwargs],
|
56 |
gradient_accumulation_steps = grad_accumulation_steps,
|
57 |
**accelerate_kwargs
|
58 |
)
|
59 |
-
|
60 |
-
if
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
78 |
|
79 |
self.model = model
|
80 |
|
|
|
50 |
|
51 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters = True)
|
52 |
|
53 |
+
logger = "wandb" if wandb.api.api_key else None
|
54 |
+
print(f"Using logger: {logger}")
|
55 |
+
|
56 |
self.accelerator = Accelerator(
|
57 |
+
log_with = logger,
|
58 |
kwargs_handlers = [ddp_kwargs],
|
59 |
gradient_accumulation_steps = grad_accumulation_steps,
|
60 |
**accelerate_kwargs
|
61 |
)
|
62 |
+
|
63 |
+
if logger == "wandb":
|
64 |
+
if exists(wandb_resume_id):
|
65 |
+
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name, 'id': wandb_resume_id}}
|
66 |
+
else:
|
67 |
+
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name}}
|
68 |
+
self.accelerator.init_trackers(
|
69 |
+
project_name = wandb_project,
|
70 |
+
init_kwargs=init_kwargs,
|
71 |
+
config={"epochs": epochs,
|
72 |
+
"learning_rate": learning_rate,
|
73 |
+
"num_warmup_updates": num_warmup_updates,
|
74 |
+
"batch_size": batch_size,
|
75 |
+
"batch_size_type": batch_size_type,
|
76 |
+
"max_samples": max_samples,
|
77 |
+
"grad_accumulation_steps": grad_accumulation_steps,
|
78 |
+
"max_grad_norm": max_grad_norm,
|
79 |
+
"gpus": self.accelerator.num_processes,
|
80 |
+
"noise_scheduler": noise_scheduler}
|
81 |
+
)
|
82 |
|
83 |
self.model = model
|
84 |
|