E2-F5-TTS / inference-cli.py
mrfakename's picture
Sync from GitHub repo
118c154 verified
import argparse
import codecs
import re
from pathlib import Path
import numpy as np
import soundfile as sf
import tomli
from cached_path import cached_path
from model import DiT, UNetT
from model.utils_infer import (
load_vocoder,
load_model,
preprocess_ref_audio_text,
infer_process,
remove_silence_for_generated_wav,
)
parser = argparse.ArgumentParser(
prog="python3 inference-cli.py",
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
"-c",
"--config",
help="Configuration file. Default=cli-config.toml",
default="inference-cli.toml",
)
parser.add_argument(
"-m",
"--model",
help="F5-TTS | E2-TTS",
)
parser.add_argument(
"-p",
"--ckpt_file",
help="The Checkpoint .pt",
)
parser.add_argument(
"-v",
"--vocab_file",
help="The vocab .txt",
)
parser.add_argument("-r", "--ref_audio", type=str, help="Reference audio file < 15 seconds.")
parser.add_argument("-s", "--ref_text", type=str, default="666", help="Subtitle for the reference audio.")
parser.add_argument(
"-t",
"--gen_text",
type=str,
help="Text to generate.",
)
parser.add_argument(
"-f",
"--gen_file",
type=str,
help="File with text to generate. Ignores --text",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
help="Path to output folder..",
)
parser.add_argument(
"--remove_silence",
help="Remove silence.",
)
parser.add_argument(
"--load_vocoder_from_local",
action="store_true",
help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
)
args = parser.parse_args()
config = tomli.load(open(args.config, "rb"))
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
gen_text = args.gen_text if args.gen_text else config["gen_text"]
gen_file = args.gen_file if args.gen_file else config["gen_file"]
if gen_file:
gen_text = codecs.open(gen_file, "r", "utf-8").read()
output_dir = args.output_dir if args.output_dir else config["output_dir"]
model = args.model if args.model else config["model"]
ckpt_file = args.ckpt_file if args.ckpt_file else ""
vocab_file = args.vocab_file if args.vocab_file else ""
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
wave_path = Path(output_dir) / "out.wav"
spectrogram_path = Path(output_dir) / "out.png"
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
vocos = load_vocoder(is_local=args.load_vocoder_from_local, local_path=vocos_local_path)
# load models
if model == "F5-TTS":
model_cls = DiT
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
if ckpt_file == "":
repo_name = "F5-TTS"
exp_name = "F5TTS_Base"
ckpt_step = 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
elif model == "E2-TTS":
model_cls = UNetT
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
if ckpt_file == "":
repo_name = "E2-TTS"
exp_name = "E2TTS_Base"
ckpt_step = 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
print(f"Using {model}...")
ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence):
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
if "voices" not in config:
voices = {"main": main_voice}
else:
voices = config["voices"]
voices["main"] = main_voice
for voice in voices:
voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
voices[voice]["ref_audio"], voices[voice]["ref_text"]
)
print("Voice:", voice)
print("Ref_audio:", voices[voice]["ref_audio"])
print("Ref_text:", voices[voice]["ref_text"])
generated_audio_segments = []
reg1 = r"(?=\[\w+\])"
chunks = re.split(reg1, text_gen)
reg2 = r"\[(\w+)\]"
for text in chunks:
match = re.match(reg2, text)
if match:
voice = match[1]
else:
print("No voice tag found, using main.")
voice = "main"
if voice not in voices:
print(f"Voice {voice} not found, using main.")
voice = "main"
text = re.sub(reg2, "", text)
gen_text = text.strip()
ref_audio = voices[voice]["ref_audio"]
ref_text = voices[voice]["ref_text"]
print(f"Voice: {voice}")
audio, final_sample_rate, spectragram = infer_process(ref_audio, ref_text, gen_text, model_obj)
generated_audio_segments.append(audio)
if generated_audio_segments:
final_wave = np.concatenate(generated_audio_segments)
with open(wave_path, "wb") as f:
sf.write(f.name, final_wave, final_sample_rate)
# Remove silence
if remove_silence:
remove_silence_for_generated_wav(f.name)
print(f.name)
main_process(ref_audio, ref_text, gen_text, ema_model, remove_silence)