mrfakename's picture
Sync from GitHub repo
4dab15f verified
raw
history blame
6.47 kB
from __future__ import annotations
import os
import random
from collections import defaultdict
from importlib.resources import files
import torch
from torch.nn.utils.rnn import pad_sequence
import jieba
from pypinyin import lazy_pinyin, Style
# seed everything
def seed_everything(seed=0):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# helpers
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
# tensor helpers
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821
if not exists(length):
length = t.amax()
seq = torch.arange(length, device=t.device)
return seq[None, :] < t[:, None]
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821
max_seq_len = seq_len.max().item()
seq = torch.arange(max_seq_len, device=start.device).long()
start_mask = seq[None, :] >= start[:, None]
end_mask = seq[None, :] < end[:, None]
return start_mask & end_mask
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821
lengths = (frac_lengths * seq_len).long()
max_start = seq_len - lengths
rand = torch.rand_like(frac_lengths)
start = (max_start * rand).long().clamp(min=0)
end = start + lengths
return mask_from_start_end_indices(seq_len, start, end)
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722
if not exists(mask):
return t.mean(dim=1)
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
num = t.sum(dim=1)
den = mask.float().sum(dim=1)
return num / den.clamp(min=1.0)
# simple utf-8 tokenizer, since paper went character based
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
return text
# char tokenizer, based on custom dataset's extracted .txt file
def list_str_to_idx(
text: list[str] | list[list[str]],
vocab_char_map: dict[str, int], # {char: idx}
padding_value=-1,
) -> int["b nt"]: # noqa: F722
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
return text
# Get tokenizer
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
"""
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
- "char" for char-wise tokenizer, need .txt vocab_file
- "byte" for utf-8 tokenizer
- "custom" if you're directly passing in a path to the vocab.txt you want to use
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
- if use "char", derived from unfiltered character & symbol counts of custom dataset
- if use "byte", set to 256 (unicode byte range)
"""
if tokenizer in ["pinyin", "char"]:
tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt")
with open(tokenizer_path, "r", encoding="utf-8") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
elif tokenizer == "byte":
vocab_char_map = None
vocab_size = 256
elif tokenizer == "custom":
with open(dataset_name, "r", encoding="utf-8") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
return vocab_char_map, vocab_size
# convert char to pinyin
def convert_char_to_pinyin(text_list, polyphone=True):
final_text_list = []
god_knows_why_en_testset_contains_zh_quote = str.maketrans(
{"β€œ": '"', "”": '"', "β€˜": "'", "’": "'"}
) # in case librispeech (orig no-pc) test-clean
custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov
for text in text_list:
char_list = []
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
text = text.translate(custom_trans)
for seg in jieba.cut(text):
seg_byte_len = len(bytes(seg, "UTF-8"))
if seg_byte_len == len(seg): # if pure alphabets and symbols
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
char_list.append(" ")
char_list.extend(seg)
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
for c in seg:
if c not in "γ€‚οΌŒγ€οΌ›οΌšοΌŸοΌγ€Šγ€‹γ€γ€‘β€”β€¦":
char_list.append(" ")
char_list.append(c)
else: # if mixed chinese characters, alphabets and symbols
for c in seg:
if ord(c) < 256:
char_list.extend(c)
else:
if c not in "γ€‚οΌŒγ€οΌ›οΌšοΌŸοΌγ€Šγ€‹γ€γ€‘β€”β€¦":
char_list.append(" ")
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
else: # if is zh punc
char_list.append(c)
final_text_list.append(char_list)
return final_text_list
# filter func for dirty data with many repetitions
def repetition_found(text, length=2, tolerance=10):
pattern_count = defaultdict(int)
for i in range(len(text) - length + 1):
pattern = text[i : i + length]
pattern_count[pattern] += 1
for pattern, count in pattern_count.items():
if count > tolerance:
return True
return False