E2-F5-TTS / model /ecapa_tdnn.py
mrfakename's picture
Sync from GitHub repo
d37849f verified
raw
history blame
11.4 kB
# just for speaker similarity evaluation, third-party code
# From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
""" Res2Conv1d + BatchNorm1d + ReLU
"""
class Res2Conv1dReluBn(nn.Module):
"""
in_channels == out_channels == channels
"""
def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4):
super().__init__()
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
self.scale = scale
self.width = channels // scale
self.nums = scale if scale == 1 else scale - 1
self.convs = []
self.bns = []
for i in range(self.nums):
self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
self.bns.append(nn.BatchNorm1d(self.width))
self.convs = nn.ModuleList(self.convs)
self.bns = nn.ModuleList(self.bns)
def forward(self, x):
out = []
spx = torch.split(x, self.width, 1)
for i in range(self.nums):
if i == 0:
sp = spx[i]
else:
sp = sp + spx[i]
# Order: conv -> relu -> bn
sp = self.convs[i](sp)
sp = self.bns[i](F.relu(sp))
out.append(sp)
if self.scale != 1:
out.append(spx[self.nums])
out = torch.cat(out, dim=1)
return out
""" Conv1d + BatchNorm1d + ReLU
"""
class Conv1dReluBn(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True):
super().__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
self.bn = nn.BatchNorm1d(out_channels)
def forward(self, x):
return self.bn(F.relu(self.conv(x)))
""" The SE connection of 1D case.
"""
class SE_Connect(nn.Module):
def __init__(self, channels, se_bottleneck_dim=128):
super().__init__()
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
def forward(self, x):
out = x.mean(dim=2)
out = F.relu(self.linear1(out))
out = torch.sigmoid(self.linear2(out))
out = x * out.unsqueeze(2)
return out
""" SE-Res2Block of the ECAPA-TDNN architecture.
"""
# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
# return nn.Sequential(
# Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
# Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
# Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
# SE_Connect(channels)
# )
class SE_Res2Block(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim):
super().__init__()
self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale)
self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
self.shortcut = None
if in_channels != out_channels:
self.shortcut = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
)
def forward(self, x):
residual = x
if self.shortcut:
residual = self.shortcut(x)
x = self.Conv1dReluBn1(x)
x = self.Res2Conv1dReluBn(x)
x = self.Conv1dReluBn2(x)
x = self.SE_Connect(x)
return x + residual
""" Attentive weighted mean and standard deviation pooling.
"""
class AttentiveStatsPool(nn.Module):
def __init__(self, in_dim, attention_channels=128, global_context_att=False):
super().__init__()
self.global_context_att = global_context_att
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
if global_context_att:
self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper
else:
self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper
self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper
def forward(self, x):
if self.global_context_att:
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
x_in = torch.cat((x, context_mean, context_std), dim=1)
else:
x_in = x
# DON'T use ReLU here! In experiments, I find ReLU hard to converge.
alpha = torch.tanh(self.linear1(x_in))
# alpha = F.relu(self.linear1(x_in))
alpha = torch.softmax(self.linear2(alpha), dim=2)
mean = torch.sum(alpha * x, dim=2)
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2
std = torch.sqrt(residuals.clamp(min=1e-9))
return torch.cat([mean, std], dim=1)
class ECAPA_TDNN(nn.Module):
def __init__(
self,
feat_dim=80,
channels=512,
emb_dim=192,
global_context_att=False,
feat_type="wavlm_large",
sr=16000,
feature_selection="hidden_states",
update_extract=False,
config_path=None,
):
super().__init__()
self.feat_type = feat_type
self.feature_selection = feature_selection
self.update_extract = update_extract
self.sr = sr
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
try:
local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main")
self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source="local", config_path=config_path)
except: # noqa: E722
self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type)
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"
):
self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"
):
self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False
self.feat_num = self.get_feat_num()
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
if feat_type != "fbank" and feat_type != "mfcc":
freeze_list = ["final_proj", "label_embs_concat", "mask_emb", "project_q", "quantizer"]
for name, param in self.feature_extract.named_parameters():
for freeze_val in freeze_list:
if freeze_val in name:
param.requires_grad = False
break
if not self.update_extract:
for param in self.feature_extract.parameters():
param.requires_grad = False
self.instance_norm = nn.InstanceNorm1d(feat_dim)
# self.channels = [channels] * 4 + [channels * 3]
self.channels = [channels] * 4 + [1536]
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
self.layer2 = SE_Res2Block(
self.channels[0],
self.channels[1],
kernel_size=3,
stride=1,
padding=2,
dilation=2,
scale=8,
se_bottleneck_dim=128,
)
self.layer3 = SE_Res2Block(
self.channels[1],
self.channels[2],
kernel_size=3,
stride=1,
padding=3,
dilation=3,
scale=8,
se_bottleneck_dim=128,
)
self.layer4 = SE_Res2Block(
self.channels[2],
self.channels[3],
kernel_size=3,
stride=1,
padding=4,
dilation=4,
scale=8,
se_bottleneck_dim=128,
)
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
cat_channels = channels * 3
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
self.pooling = AttentiveStatsPool(
self.channels[-1], attention_channels=128, global_context_att=global_context_att
)
self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
def get_feat_num(self):
self.feature_extract.eval()
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
with torch.no_grad():
features = self.feature_extract(wav)
select_feature = features[self.feature_selection]
if isinstance(select_feature, (list, tuple)):
return len(select_feature)
else:
return 1
def get_feat(self, x):
if self.update_extract:
x = self.feature_extract([sample for sample in x])
else:
with torch.no_grad():
if self.feat_type == "fbank" or self.feat_type == "mfcc":
x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len
else:
x = self.feature_extract([sample for sample in x])
if self.feat_type == "fbank":
x = x.log()
if self.feat_type != "fbank" and self.feat_type != "mfcc":
x = x[self.feature_selection]
if isinstance(x, (list, tuple)):
x = torch.stack(x, dim=0)
else:
x = x.unsqueeze(0)
norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
x = (norm_weights * x).sum(dim=0)
x = torch.transpose(x, 1, 2) + 1e-6
x = self.instance_norm(x)
return x
def forward(self, x):
x = self.get_feat(x)
out1 = self.layer1(x)
out2 = self.layer2(out1)
out3 = self.layer3(out2)
out4 = self.layer4(out3)
out = torch.cat([out2, out3, out4], dim=1)
out = F.relu(self.conv(out))
out = self.bn(self.pooling(out))
out = self.linear(out)
return out
def ECAPA_TDNN_SMALL(
feat_dim,
emb_dim=256,
feat_type="wavlm_large",
sr=16000,
feature_selection="hidden_states",
update_extract=False,
config_path=None,
):
return ECAPA_TDNN(
feat_dim=feat_dim,
channels=512,
emb_dim=emb_dim,
feat_type=feat_type,
sr=sr,
feature_selection=feature_selection,
update_extract=update_extract,
config_path=config_path,
)