File size: 2,943 Bytes
d37849f
dd217c7
 
 
 
 
 
 
 
 
 
d37849f
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
d37849f
dd217c7
 
 
 
 
 
 
 
 
 
d37849f
dd217c7
 
 
d37849f
dd217c7
 
 
 
d37849f
dd217c7
a674527
 
 
 
 
dd217c7
 
d37849f
 
 
 
 
9eac142
d37849f
 
 
dd217c7
 
 
9eac142
d37849f
dd217c7
d37849f
 
 
 
 
 
 
 
 
 
 
 
dd217c7
 
 
d37849f
 
 
 
dd217c7
 
d37849f
dd217c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from model import CFM, UNetT, DiT, Trainer
from model.utils import get_tokenizer
from model.dataset import load_dataset


# -------------------------- Dataset Settings --------------------------- #

target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256

tokenizer = "pinyin"  # 'pinyin', 'char', or 'custom'
tokenizer_path = None  # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
dataset_name = "Emilia_ZH_EN"

# -------------------------- Training Settings -------------------------- #

exp_name = "F5TTS_Base"  # F5TTS_Base | E2TTS_Base

learning_rate = 7.5e-5

batch_size_per_gpu = 38400  # 8 GPUs, 8 * 38400 = 307200
batch_size_type = "frame"  # "frame" or "sample"
max_samples = 64  # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
grad_accumulation_steps = 1  # note: updates = steps / grad_accumulation_steps
max_grad_norm = 1.0

epochs = 11  # use linear decay, thus epochs control the slope
num_warmup_updates = 20000  # warmup steps
save_per_updates = 50000  # save checkpoint per steps
last_per_steps = 5000  # save last checkpoint per steps

# model params
if exp_name == "F5TTS_Base":
    wandb_resume_id = None
    model_cls = DiT
    model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
elif exp_name == "E2TTS_Base":
    wandb_resume_id = None
    model_cls = UNetT
    model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)


# ----------------------------------------------------------------------- #


def main():
    if tokenizer == "custom":
        tokenizer_path = tokenizer_path
    else:
        tokenizer_path = dataset_name
    vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)

    mel_spec_kwargs = dict(
        target_sample_rate=target_sample_rate,
        n_mel_channels=n_mel_channels,
        hop_length=hop_length,
    )

    model = CFM(
        transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
        mel_spec_kwargs=mel_spec_kwargs,
        vocab_char_map=vocab_char_map,
    )

    trainer = Trainer(
        model,
        epochs,
        learning_rate,
        num_warmup_updates=num_warmup_updates,
        save_per_updates=save_per_updates,
        checkpoint_path=f"ckpts/{exp_name}",
        batch_size=batch_size_per_gpu,
        batch_size_type=batch_size_type,
        max_samples=max_samples,
        grad_accumulation_steps=grad_accumulation_steps,
        max_grad_norm=max_grad_norm,
        wandb_project="CFM-TTS",
        wandb_run_name=exp_name,
        wandb_resume_id=wandb_resume_id,
        last_per_steps=last_per_steps,
    )

    train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
    trainer.train(
        train_dataset,
        resumable_with_seed=666,  # seed for shuffling dataset
    )


if __name__ == "__main__":
    main()