File size: 6,907 Bytes
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Emilia Dataset: https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07
# if use updated new version, i.e. WebDataset, feel free to modify / draft your own script

# generate audio text map for Emilia ZH & EN
# evaluate for vocab size

import sys, os
sys.path.append(os.getcwd())

from pathlib import Path
import json
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor

from datasets import Dataset
from datasets.arrow_writer import ArrowWriter

from model.utils import (
    repetition_found,
    convert_char_to_pinyin,
)


out_zh = {"ZH_B00041_S06226", "ZH_B00042_S09204", "ZH_B00065_S09430", "ZH_B00065_S09431", "ZH_B00066_S09327", "ZH_B00066_S09328"}
zh_filters = ["い", "て"]
# seems synthesized audios, or heavily code-switched
out_en = {
    "EN_B00013_S00913", "EN_B00042_S00120", "EN_B00055_S04111", "EN_B00061_S00693", "EN_B00061_S01494", "EN_B00061_S03375",
    
    "EN_B00059_S00092", "EN_B00111_S04300", "EN_B00100_S03759", "EN_B00087_S03811", "EN_B00059_S00950", "EN_B00089_S00946", "EN_B00078_S05127", "EN_B00070_S04089", "EN_B00074_S09659", "EN_B00061_S06983", "EN_B00061_S07060", "EN_B00059_S08397", "EN_B00082_S06192", "EN_B00091_S01238", "EN_B00089_S07349", "EN_B00070_S04343", "EN_B00061_S02400", "EN_B00076_S01262", "EN_B00068_S06467", "EN_B00076_S02943", "EN_B00064_S05954", "EN_B00061_S05386", "EN_B00066_S06544", "EN_B00076_S06944", "EN_B00072_S08620", "EN_B00076_S07135", "EN_B00076_S09127", "EN_B00065_S00497", "EN_B00059_S06227", "EN_B00063_S02859", "EN_B00075_S01547", "EN_B00061_S08286", "EN_B00079_S02901", "EN_B00092_S03643", "EN_B00096_S08653", "EN_B00063_S04297", "EN_B00063_S04614", "EN_B00079_S04698", "EN_B00104_S01666", "EN_B00061_S09504", "EN_B00061_S09694", "EN_B00065_S05444", "EN_B00063_S06860", "EN_B00065_S05725", "EN_B00069_S07628", "EN_B00083_S03875", "EN_B00071_S07665", "EN_B00071_S07665", "EN_B00062_S04187", "EN_B00065_S09873", "EN_B00065_S09922", "EN_B00084_S02463", "EN_B00067_S05066", "EN_B00106_S08060", "EN_B00073_S06399", "EN_B00073_S09236", "EN_B00087_S00432", "EN_B00085_S05618", "EN_B00064_S01262", "EN_B00072_S01739", "EN_B00059_S03913", "EN_B00069_S04036", "EN_B00067_S05623", "EN_B00060_S05389", "EN_B00060_S07290", "EN_B00062_S08995",
}
en_filters = ["ا", "い", "て"]


def deal_with_audio_dir(audio_dir):
    audio_jsonl = audio_dir.with_suffix(".jsonl")
    sub_result, durations = [], []
    vocab_set = set()
    bad_case_zh = 0
    bad_case_en = 0
    with open(audio_jsonl, "r") as f:
        lines = f.readlines()
        for line in tqdm(lines, desc=f"{audio_jsonl.stem}"):
            obj = json.loads(line)
            text = obj["text"]
            if obj['language'] == "zh":
                if obj["wav"].split("/")[1] in out_zh or any(f in text for f in zh_filters) or repetition_found(text):
                    bad_case_zh += 1
                    continue
                else:
                    text = text.translate(str.maketrans({',': ',', '!': '!', '?': '?'}))  # not "。" cuz much code-switched
            if obj['language'] == "en":
                if obj["wav"].split("/")[1] in out_en or any(f in text for f in en_filters) or repetition_found(text, length=4):
                    bad_case_en += 1
                    continue
            if tokenizer == "pinyin":
                text = convert_char_to_pinyin([text], polyphone = polyphone)[0]
            duration = obj["duration"]
            sub_result.append({"audio_path": str(audio_dir.parent / obj["wav"]), "text": text, "duration": duration})
            durations.append(duration)
            vocab_set.update(list(text))
    return sub_result, durations, vocab_set, bad_case_zh, bad_case_en


def main():
    assert tokenizer in ["pinyin", "char"]
    result = []
    duration_list = []
    text_vocab_set = set()
    total_bad_case_zh = 0
    total_bad_case_en = 0

    # process raw data
    executor = ProcessPoolExecutor(max_workers=max_workers)
    futures = []
    for lang in langs:
        dataset_path = Path(os.path.join(dataset_dir, lang))
        [
            futures.append(executor.submit(deal_with_audio_dir, audio_dir))
            for audio_dir in dataset_path.iterdir()
            if audio_dir.is_dir()
        ]
    for futures in tqdm(futures, total=len(futures)):
        sub_result, durations, vocab_set, bad_case_zh, bad_case_en = futures.result()
        result.extend(sub_result)
        duration_list.extend(durations)
        text_vocab_set.update(vocab_set)
        total_bad_case_zh += bad_case_zh
        total_bad_case_en += bad_case_en
    executor.shutdown()

    # save preprocessed dataset to disk
    if not os.path.exists(f"data/{dataset_name}"):
        os.makedirs(f"data/{dataset_name}")
    print(f"\nSaving to data/{dataset_name} ...")
    # dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list})  # oom
    # dataset.save_to_disk(f"data/{dataset_name}/raw", max_shard_size="2GB")
    with ArrowWriter(path=f"data/{dataset_name}/raw.arrow") as writer:
        for line in tqdm(result, desc=f"Writing to raw.arrow ..."):
            writer.write(line)

    # dup a json separately saving duration in case for DynamicBatchSampler ease
    with open(f"data/{dataset_name}/duration.json", 'w', encoding='utf-8') as f:
        json.dump({"duration": duration_list}, f, ensure_ascii=False)

    # vocab map, i.e. tokenizer
    # add alphabets and symbols (optional, if plan to ft on de/fr etc.)
    # if tokenizer == "pinyin":
    #     text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
    with open(f"data/{dataset_name}/vocab.txt", "w") as f:
        for vocab in sorted(text_vocab_set):
            f.write(vocab + "\n")

    print(f"\nFor {dataset_name}, sample count: {len(result)}")
    print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
    print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
    if "ZH" in langs: print(f"Bad zh transcription case: {total_bad_case_zh}")
    if "EN" in langs: print(f"Bad en transcription case: {total_bad_case_en}\n")


if __name__ == "__main__":

    max_workers = 32

    tokenizer = "pinyin"  # "pinyin" | "char"
    polyphone = True

    langs = ["ZH", "EN"]
    dataset_dir = "<SOME_PATH>/Emilia_Dataset/raw"
    dataset_name = f"Emilia_{'_'.join(langs)}_{tokenizer}"
    print(f"\nPrepare for {dataset_name}\n")

    main()

    # Emilia               ZH & EN
    # samples count       37837916   (after removal)
    # pinyin vocab size       2543   (polyphone)
    # total duration      95281.87   (hours)
    # bad zh asr cnt        230435   (samples)
    # bad eh asr cnt         37217   (samples)

    # vocab size may be slightly different due to jieba tokenizer and pypinyin (e.g. way of polyphoneme)
    # please be careful if using pretrained model, make sure the vocab.txt is same